Ethane ( , ) is a naturally occurring Organic compound chemical compound with chemical formula . At standard temperature and pressure, ethane is a colorless, odorless gas. Like many , ethane is isolated on an industrial scale from natural gas and as a petrochemical by-product of oil refinery. Its chief use is as feedstock for ethylene production. The ethyl group is formally, although rarely practically, derived from ethane.
During the period 1847–1849, in an effort to vindicate the radical theory of organic chemistry, Hermann Kolbe and Edward Frankland produced ethane by the reductions of propionitrile (ethyl cyanide) and ethyl iodide with potassium metal, and, as did Faraday, by the electrolysis of Aqueous solution acetates. They mistook the product of these reactions for the methyl radical (), of which ethane () is a dimer.
This error was corrected in 1864 by Carl Schorlemmer, who showed that the product of all these reactions was in fact ethane. Ethane was discovered dissolved in light crude oil by Edmund Ronalds in 1864.
The bond parameters of ethane have been measured to high precision by microwave spectroscopy and electron diffraction: rC−C = 1.528(3) Å, rC−H = 1.088(5) Å, and ∠CCH = 111.6(5)° by microwave and rC−C = 1.524(3) Å, rC−H = 1.089(5) Å, and ∠CCH = 111.9(5)° by electron diffraction (the numbers in parentheses represents the uncertainties in the final digits).
Rotating a molecular substructure about a twistable bond usually requires energy. The minimum energy to produce a 360° bond rotation is called the rotational barrier.
Ethane gives a classic, simple example of such a rotational barrier, sometimes called the "ethane barrier". Among the earliest experimental evidence of this barrier (see diagram at left) was obtained by modelling the entropy of ethane.
The three hydrogens at each end are free to pinwheel about the central carbon–carbon bond when provided with sufficient energy to overcome the barrier. The physical origin of the barrier is still not completely settled, although the overlap (exchange) repulsion between the hydrogen atoms on opposing ends of the molecule is perhaps the strongest candidate, with the stabilizing effect of hyperconjugation on the staggered conformation contributing to the phenomenon. Theoretical methods that use an appropriate starting point (orthogonal orbitals) find that hyperconjugation is the most important factor in the origin of the ethane rotation barrier.
As far back as 1890–1891, chemists suggested that ethane molecules preferred the staggered conformation with the two ends of the molecule askew from each other.
Although ethane is a greenhouse gas, it is much less abundant than methane, has a lifetime of only a few months compared to over a decade, and is also less efficient at absorbing radiation relative to mass. In fact, ethane's global warming potential largely results from its conversion in the atmosphere to methane. It has been detected as a trace component in the atmospheres of all four , and in the atmosphere of Saturn's moon Titan.
Atmospheric ethane results from the Sun's photochemistry action on methane gas, also present in these atmospheres: ultraviolet photons of shorter than 160 nanometer can photo-dissociate the methane molecule into a methyl radical and a hydrogen atom. When two methyl radicals recombine, the result is ethane:
In Earth's atmosphere, convert ethane to methanol vapor with a half-life of around three months.
It is suspected that ethane produced in this fashion on Titan rains back onto the moon's surface, and over time has accumulated into hydrocarbon seas covering much of the moon's polar regions. In mid-2005, the Cassini-Huygens orbiter discovered Ontario Lacus in Titan's south polar regions. Further analysis of infrared spectroscopic data presented in July 2008 provided additional evidence for the presence of liquid ethane in Ontario Lacus. Several significantly larger hydrocarbon lakes, Ligeia Mare and Kraken Mare being the two largest, were discovered near Titan's north pole using radar data gathered by Cassini. These lakes are believed to be filled primarily by a mixture of liquid ethane and methane.
In 1996, ethane was detected in Comet Hyakutake, and it has since been detected in some other comets. The existence of ethane in these distant solar system bodies may implicate ethane as a primordial component of the solar nebula from which the sun and planets are believed to have formed.
In 2006, Dale Cruikshank of NASA/Ames Research Center (a New Horizons co-investigator) and his colleagues announced the spectroscopic discovery of ethane on Pluto's surface.
The combustion of ethane releases 1559.7 kJ/mol, or 51.9 kJ/g, of heat, and produces carbon dioxide and water according to the chemical equation:
Combustion may also occur without an excess of oxygen, yielding carbon monoxide, acetaldehyde, methane, methanol, and ethanol. At higher temperatures, especially in the range , ethylene is a significant product:
Ethane is most efficiently separated from methane by liquefying it at cryogenic temperatures. Various refrigeration strategies exist: the most economical process presently in wide use employs a turboexpander, and can recover more than 90% of the ethane in natural gas. In this process, chilled gas is expanded through a turbine, reducing the temperature to approximately . At this low temperature, gaseous methane can be separated from the liquefied ethane and heavier hydrocarbons by distillation. Further distillation then separates ethane from the propane and heavier hydrocarbons.
Ethane has been investigated as a feedstock for other commodity chemicals. Oxidative chlorination of ethane has long appeared to be a potentially more economical route to vinyl chloride than ethylene chlorination. Many patent exist on this theme, but poor selectivity for vinyl chloride and Corrosion reaction conditions have discouraged the commercialization of most of them. Presently, INEOS operates a 1000 t/a (tonnes per annum) ethane-to-vinyl chloride pilot plant at Wilhelmshaven in Germany.
SABIC operates a 34,000 t/a plant at Yanbu to produce acetic acid by ethane oxidation. The economic viability of this process may rely on the low cost of ethane near Saudi oil fields, and it may not be competitive with methanol carbonylation elsewhere in the world.
Ethane can be used as a refrigerant in cryogenic refrigeration systems.
Ethane is not a carcinogen.
Properties
Atmospheric and extraterrestrial
Chemistry
Such oxidative dehydrogenation reactions are relevant to the production of ethylene.
Production
Usage
In the laboratory
Health and safety
See also
External links
|
|