In astrophysics, the ergosphere is a region located just outside a rotating black hole, between its event horizon and a further external surface predicted by Kerr metric. Its name was proposed by Remo Ruffini and John Archibald Wheeler during the Les Houches lectures in 1971 and is derived . It received this name because it is theoretically possible to Penrose process from this region. The ergosphere touches the event horizon at the poles of a rotating black hole and extends to a greater radius at the equator. A black hole with modest angular momentum has an ergosphere with a shape approximated by an oblate spheroid, while faster spins produce a more pumpkin-shaped ergosphere. The equatorial (maximal) radius of an ergosphere is the Schwarzschild radius, the radius of a non-rotating black hole. The polar (minimal) radius is also the polar (minimal) radius of the event horizon which can be as little as half the Schwarzschild radius for a maximally rotating black hole.
The set of all such points defines the ergosphere surface, called ergosurface. The outer surface of the ergosphere is called the static surface or static limit. This is because world lines change from being time-like outside the static limit to being space-like inside it.Misner 1973, p. 879. It is the speed of light that arbitrarily defines the ergosphere surface. Such a surface would appear as an oblate that is coincident with the event horizon at the pole of rotation, but at a greater distance from the event horizon at the equator. Outside this surface, space is still dragged, but at a lesser rate.
Since the ergosphere is outside the event horizon, it is still possible for objects that enter that region with sufficient velocity to escape from the gravitational pull of the black hole. An object can gain energy by entering the black hole's rotation and then escaping from it, thus taking some of the black hole's energy with it (making the maneuver similar to the exploitation of the Oberth effect around "normal" space objects).
This process of removing energy from a rotating black hole was proposed by the mathematician Roger Penrose in 1969 and is called the Penrose process. The maximal amount of energy gain possible for a single particle via this process is 20.7% in terms of its mass equivalence,Chandrasekhar, p. 369. and if this process is repeated by the same mass, the theoretical maximal energy gain approaches 29% of its original mass-energy equivalent.Carroll, p. 271. As this energy is removed, the black hole loses angular momentum, and thus the limit of zero rotation is approached as spacetime dragging is reduced. In the limit, the ergosphere no longer exists. This process is considered a possible explanation for a source of energy of such energetic phenomena as . Results from computer models show that the Penrose process is capable of producing the high-energy particles that are observed being emitted from and other active galactic nuclei.
|
|