Epibatidine is a chlorinated alkaloid that is secreted by the frog Epipedobates anthonyi and poison dart frogs from the Ameerega genus. It was discovered by John W. Daly in 1974, but its structure was not fully elucidated until 1992. Whether epibatidine occurs naturally remains controversial due to challenges in conclusively identifying the compound from the limited samples collected by Daly. By the time that high-resolution spectrometry was used in 1991, there remained less than one milligram of extract from Daly's samples, raising concerns about possible contamination. Samples from other batches of the same species of frog failed to yield epibatidine.
Epibatidine is a neurotoxin that interferes with nicotinic and muscarinic acetylcholine receptors. These receptors are involved in the transmission of painful sensations, and in movement, among other functions. Epibatidine causes full body numbness, which can rapidly progress to full body paralysis. Doses are lethal when the paralysis causes respiratory arrest. Originally, it was thought that epibatidine could be useful as a drug. However, because of its unacceptable therapeutic index, it is no longer being researched for potential therapeutic uses.
The structure of epibatidine was elucidated in 1992, an effort hindered by E. anthonyi gaining IUCN protected status in 1984. Furthermore, these frogs do not produce the toxin when bred and reared in captivity, because they do not synthesize epibatidine themselves. Like other poison dart frogs, they instead obtain it through their diet and then sequester it on their skin. Likely dietary sources are beetles, ants, mites, and flies. Daly and Charles noticed that epibatidine was produced from their diet due to their return trip to Ecuador in 1976 when they found that at one site, none of the frogs present produced alkaloids, such as epibatidine; they discovered that only the frogs at certain sites with the dietary means allowed these frogs to produce epibatidine. Overcoming the difficulties, the structure was eventually determined, and the first synthesis of epibatidine was completed in 1993. Many other synthesis methods have been developed since.
Because of its analgesic effect, there was intense interest in epibatidine's use as a drug, because it was found not to be an opioid. This meant that it could potentially be used without fear of addiction. However, it was soon found that it cannot be used in humans because the dose resulting in toxic symptoms is too low for it to be safe.
After the discovery of the structure of epibatidine, more than fifty ways to synthesize it in the laboratory have been devised. In the first reported example, a nine-step procedure produces the substance as a racemate (in contrast, the naturally occurring compound is the (+)-enantiomer; the (−)-enantiomer does not occur naturally). It was later determined that the (+) and (-) enantiomers had equivalent analgesic as well as toxic effects. The process has proven to be quite productive, with a yield of about 40%.
An enantioselective synthesis reported by E J Corey starting from chloronicotinaldehyde is outlined below:
In addition to Corey's method, other notable methods include those of Broka, Huang and Shen, and Clayton and Regan.
Nicotinic acetylcholine receptors are found in the post-synaptic membranes of nerve cells. These receptors are an example of ion gated channels where binding by a ligand causes a conformational change allowing ions to cross the membrane into the cell.
The paralytic property of epibatidine takes place after its binding to muscle-type nicotinic receptors.
Low doses of epibatidine will only affect the nAChRs, due to a higher affinity to nAChRs than to mAChRs. Higher doses, however, will cause epibatidine to bind to the mAChRs.
Both (+)- and (-)- of epibatidine are biologically active, and both have similar binding affinities to nAChRs Only the (+)-enantiomer does not induce tolerance. While this may be a potential therapeutic advantage over morphine, epibatidine has not entered clinical trials because even very small doses are lethal to rodents.
In research on mice, administration of doses greater than 5 μg/kg of epibatidine caused a dose-dependent paralyzing effect on the organism. With doses over 5 μg/kg, symptoms included hypertension (increased blood pressure), paralysis in the respiratory system, seizures, and, ultimately, death. The symptoms do, however, change drastically when lower doses are given. Mice became resistant to pain and heat with none of the negative effects of higher doses.
Also there is currently little information on the path of clearance from the body. Maximum concentration in the brain is reached at about 30 minutes after entering the body.
Compared to the gold standard in pain management, morphine, epibatidine needed only 2.5 μg/kg (11.98 nmol/kg) to initiate a pain-relieving effect whilst the same effect required approximately 10 mg/kg (35.05 μmol/kg) of morphine (approx. 2,900 times the efficacy.) Currently, only rudimentary research into epibatidine's effects has yet been performed; the drug has been administered only to rodents for analysis at this time.
Synthetic analogs
Chemical structure
Biological effects
Mechanism of action
Symptoms
Pharmacology
Potential medical uses
Antidote
See also
External links
|
|