Endorphins (contracted from endogenous morphine) are produced in the brain that block the perception of pain and increase feelings of wellbeing. They are produced and stored in the pituitary gland of the brain. Endorphins are endogenous often produced in the brain and adrenal medulla during physical exercise or orgasm and inhibit pain, muscle cramps, and relieve stress.
History
in the brain were first discovered in 1973 by investigators at the University of Aberdeen, John Hughes and
Hans Kosterlitz. They isolated "
" (from the
Greek language εγκέφαλος) from
pig brain, identified as Met-enkephalin and Leu-enkephalin.
This came after the discovery of a receptor that was proposed to produce the pain-relieving
analgesic effects of
morphine and other opioids, which led Kosterlitz and Hughes to their discovery of the endogenous opioid ligands.
Research during this time was focused on the search for a painkiller that did not have the addictive character or overdose risk of
morphine.
Rabi Simantov and Solomon H. Snyder isolated morphine-like peptides from calf brain. Eric J. Simon, who independently discovered opioid receptors, later termed these peptides as endorphins. This term was essentially assigned to any peptide that demonstrated morphine-like activity. In 1976, Choh Hao Li and David Chung recorded the sequences of α-, β-, and γ-endorphin isolated from camel pituitary glands for their opioid activity. Li determined that β-endorphin produced strong analgesic effects. Wilhelm Feldberg and Derek George Smyth in 1977 confirmed this, finding β-endorphin to be more potent than morphine. They also confirmed that its effects were reversed by naloxone, an opioid antagonist.
Studies have subsequently distinguished between enkephalins, endorphins, and endogenously produced true morphine, which is not a peptide. Opioid peptides are classified based on their precursor propeptide: all endorphins are synthesized from the precursor proopiomelanocortin (POMC), encoded by proenkephalin A, and dynorphins encoded by pre-dynorphin.
Etymology
The word
endorphin is derived from ἔνδον / meaning "within" (
endogenous, ἐνδογενής / , "proceeding from within"), and
morphine, from
Morpheus (), the god of dreams in the Greek mythology. Thus, endorphin is a contraction of 'endo(genous) (mo)rphin' (morphin being the old spelling of morphine).
Types
The class of endorphins consists of three endogenous opioid peptides: α-Endorphin, β-endorphin, and γ-endorphin.
The endorphins are all synthesized from the precursor protein, proopiomelanocortin, and all contain a Met-enkephalin motif at their N-terminus: Tyr-Gly-Gly-Phe-Met.
α-endorphin and γ-endorphin result from proteolytic cleavage of β-endorphin between the Thr(16)-Leu(17) residues and Leu(17)-Phe(18) respectively.
α-endorphin has the shortest sequence, and β-endorphin has the longest sequence.
α-Endorphin and γ-endorphin are primarily found in the anterior and intermediate pituitary. While β-endorphin is studied for its opioid activity, α-endorphin and γ-endorphin both lack affinity for opiate receptors and thus do not affect the body in the same way that β-endorphin does. Some studies have characterized α-endorphin activity as similar to that of psychostimulants and γ-endorphin activity to that of neuroleptics separately.
|
|
| α-Endorphin | Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-OH | |
| β-Endorphin | Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu | |
| γ-Endorphin | Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu-OH | |
Synthesis
Endorphin precursors are primarily produced in the
pituitary gland.
All three types of endorphins are fragments of the precursor protein proopiomelanocortin (POMC). At the trans-Golgi network, POMC binds to a membrane-bound protein, carboxypeptidase E (CPE).
CPE facilitates POMC transport into immature budding vesicles.
In mammals, pro-peptide convertase 1 (PC1) cleaves POMC into adrenocorticotropin (ACTH) and
beta-lipotropin (β-LPH).
β-LPH, a pituitary hormone with little opiate activity, is then continually fragmented into different peptides, including α-endorphin, β-endorphin, and γ-endorphin.
Peptide convertase 2 (PC2) is responsible for cleaving β-LPH into β-endorphin and γ-lipotropin.
Formation of α-endorphin and γ-endorphin results from proteolytic cleavage of β-endorphin.
Regulation
Norepinephrine has been shown to increase endorphins production within inflammatory tissues, resulting in an
Analgesic;
the stimulation of sympathetic nerves by electro-acupuncture is believed to be the cause of its analgesic effects.
Mechanism of action
Endorphins are released from the pituitary gland, typically in response to pain, and can act in both the central nervous system (CNS) and the peripheral nervous system (PNS). In the PNS, β-endorphin is the primary endorphin released from the
pituitary gland. Endorphins inhibit transmission of pain signals by binding μ-receptors of peripheral nerves, which block their release of neurotransmitter
substance P. The mechanism in the CNS is similar but works by blocking a different neurotransmitter: gamma-aminobutyric acid (GABA). In turn, inhibition of GABA increases the production and release of
dopamine, a neurotransmitter associated with reward learning.
Functions
Endorphins play a major role in the body's inhibitory response to pain. Research has demonstrated that
meditation by trained individuals can be used to trigger endorphin release.
Laughter may also stimulate endorphin production and elevate one's pain threshold.
Endorphin production can be triggered by vigorous aerobic exercise. The release of β-endorphin has been postulated to contribute to the phenomenon known as "runner's high". However, experimental blockade of the mu opioid receptor has shown that endorphins are not strictly necessary for the development of exercise-induced euphoria. It has been suggested that other neurotransmitters, namely endocannabinoids, are more likely contributors. Endorphins may partially mediate exercise-induced analgesia.
See also
-
Neurobiological effects of physical exercise
-
Enkephalin
External links