The endocrine system is a network of glands and organs located throughout the body. Along with the nervous system, it makes the neuroendocrine system, which controls and regulates many of the body's functions. Endocrine glands are ductless of the endocrine system that secrete their products, , directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, Ovary, , thyroid, parathyroid gland, hypothalamus and . The hypothalamus and pituitary glands are neuroendocrine organs.
Four of the six anterior pituitary hormones are that regulate the function of other endocrine organs. Most anterior pituitary hormones exhibit a diurnal rhythm of release, which is subject to modification by stimuli influencing the hypothalamus.
Somatotropic hormone or growth hormone (GH) is an anabolism that stimulates the growth of all body tissues especially skeletal muscle and bone. It may act directly, or indirectly via insulin-like growth factors (IGFs). GH mobilizes fats, stimulates protein synthesis, and inhibits glucose uptake and metabolism. Secretion is regulated by growth hormone-releasing hormone (GHRH) and Somatostatin (GHIH), or somatostatin. Hypersecretion causes gigantism in children and acromegaly in adults; hyposecretion in children causes pituitary dwarfism.
Thyroid-stimulating hormone promotes normal development and activity of the thyroid gland. Thyrotropin-releasing hormone stimulates its release; negative feedback of thyroid hormone inhibits it.
Adrenocorticotropic hormone stimulates the adrenal cortex to release corticosteroids. Adrenocorticotropic hormone release is triggered by corticotropin-releasing hormone and inhibited by rising glucocorticoid levels.
The —follicle-stimulating hormone and luteinizing hormone regulate the functions of the gonads in both sexes. Follicle-stimulating hormone stimulates sex cell production; luteinizing hormone stimulates gonadal hormone production. Gonadotropin levels rise in response to gonadotropin-releasing hormone. Negative feedback of gonadal hormones inhibits gonadotropin release.
Prolactin promotes milk production in human females. Its secretion is prompted by PRLH and inhibited by prolactin-inhibiting hormone.
The intermediate lobe of the pituitary gland secretes only one enzyme that is melanocyte stimulating hormone. It is linked with the formation of the black pigment in our skin called melanin.
The neurohypophysis stores and releases two hypothalamic hormones:
The increase the rate of metabolism, and include thyroxine (T4) and triiodothyronine (T3). Secretion is stimulated by the thyroid-stimulating hormone, secreted by the anterior pituitary. When thyroid levels are high, there is negative feedback that decreases the amount of Thyroid-stimulating hormone secreted. Most T4 is converted to T3 (a more active form) in the target tissues.
Calcitonin, produced by the parafollicular cells (C cells) of the thyroid gland in response to rising blood calcium levels, depresses blood calcium levels by inhibiting bone matrix resorption and enhancing calcium deposit in bones. Excessive secretion cause hyperthyroidism and deficiency cause hypothyroidism.
Somatostatin is released by and acts as an inhibitor of GH, insulin, and glucagon.
The testes of the male begin to produce testosterone at puberty in response to luteinizing hormone. Testosterone promotes maturation of the male reproductive organs, development of secondary sex characteristics such as increased muscle and bone mass, and the growth of body hair.
The natural decrease in function of the female's ovaries during late middle age results in menopause. The efficiency of all endocrine glands seems to decrease gradually as ageing occurs. This leads to a generalized increase in the incidence of diabetes mellitus and a lower metabolic rate.
The ability of a target cell to respond to a hormone depends on the presence of receptors, within the cell or on its plasma membrane, to which the hormone can bind.
Hormone receptors are dynamic structures. Changes in the number and sensitivity of hormone receptors may occur in response to high or low levels of stimulating hormones.
Blood levels of hormones reflect a balance between secretion and degradation/excretion. The liver and are the major organs that degrade hormones; breakdown products are excreted in urine and faeces.
Hormone half-life and duration of activity are limited and vary from hormone to hormone.
Interaction of hormones at target cells Permissiveness is the situation in which a hormone cannot exert its full effects without the presence of another hormone.
Synergy occurs when two or more hormones produce the same effects in a target cell and their results are amplified.
Antagonism occurs when a hormone opposes or reverses the effect of another hormone.
The nervous system, acting through hypothalamic controls, can in certain cases override or modulate hormonal effects.
]]
Diseases of the endocrine glands are common, including conditions such as diabetes mellitus, thyroid disease, and obesity.
Endocrine disease is characterized by irregulated hormone release (a productive pituitary adenoma), inappropriate response to signalling (hypothyroidism), lack of a gland (diabetes mellitus type 1, diminished erythropoiesis in chronic kidney failure), or structural enlargement in a critical site such as the thyroid (toxic multinodular goitre). Hypofunction of endocrine glands can occur as a result of the loss of reserve, hyposecretion, agenesis, atrophy, or active destruction. Hyperfunction can occur as a result of hypersecretion, loss of suppression, hyperplasia, or neoplastic change, or hyperstimulation.
Endocrinopathies are classified as primary, secondary, or tertiary. Primary endocrine disease inhibits the action of downstream glands. Secondary endocrine disease is indicative of a problem with the pituitary gland. Tertiary endocrine disease is associated with dysfunction of the hypothalamus and its releasing hormones.
As the Thyroid cancer, and hormones have been implicated in signaling distant tissues to proliferate, for example, the estrogen receptor has been shown to be involved in certain . Endocrine, paracrine, and autocrine signaling have all been implicated in proliferation, one of the required steps of oncogenesis.
Other common diseases that result from endocrine dysfunction include Addison's disease, Cushing's disease and Grave's disease. Cushing's disease and Addison's disease are pathologies involving the dysfunction of the adrenal gland. Dysfunction in the adrenal gland could be due to primary or secondary factors and can result in hypercortisolism or hypocortisolism. Cushing's disease is characterized by the hypersecretion of the adrenocorticotropic hormone due to a pituitary adenoma that ultimately causes endogenous hypercortisolism by stimulating the adrenal glands. Some clinical signs of Cushing's disease include obesity, moon face, and hirsutism.Vander, Arthur (2008). Vander's Human Physiology: the mechanisms of body function. Boston: McGraw-Hill Higher Education. pp. 345-347 Addison's disease is an endocrine disease that results from hypocortisolism caused by adrenal gland insufficiency. Adrenal insufficiency is significant because it is correlated with decreased ability to maintain blood pressure and blood sugar, a defect that can prove to be fatal.
Graves' disease involves the hyperactivity of the thyroid gland which produces the T3 and T4 hormones. Graves' disease effects range from excess sweating, fatigue, heat intolerance and high blood pressure to swelling of the eyes that causes redness, puffiness and in rare cases reduced or double vision.
Graves' disease is the most common cause of hyperthyroidism; hyposecretion causes cretinism in infants and myxoedema in adults.
Hyperparathyroidism results in hypercalcemia and its effects and in extreme bone wasting. Hypoparathyroidism leads to hypocalcemia, evidenced by tetany seizure and respiratory paralysis. Hyposecretion of insulin results in diabetes mellitus; cardinal signs are polyuria, polydipsia, and polyphagia.
|
|