The embryophytes () are a clade of plants, also known as Embryophyta ( sensu strictissimo) () or land plants. They are the most familiar group of that make up the vegetation on Earth's dry lands and wetlands. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of freshwater charophyte green algae as a sister taxon of Charophyceae, Coleochaetophyceae and Zygnematophyceae. Embryophytes consist of the and the polysporangiophytes. Living embryophytes include , , mosses, , ferns, and (). Embryophytes have diplobiontic life cycles.
The embryophytes are informally called "land plants" because they thrive primarily in terrestrial habitats (despite some members having evolved secondarily to live once again in semiaquatic/aquatic habitats), while the related green algae are primarily aquatic. Embryophytes are complex multicellular with specialized reproductive organs. The name derives from their innovative characteristic of nurturing the young embryo sporophyte during the early stages of its multicellular development within the tissues of the parent gametophyte. With very few exceptions, embryophytes obtain biological energy by photosynthesis, using chlorophyll a and chlorophyll b to harvest the light energy in sunlight for carbon fixation from carbon dioxide and water in order to synthesize carbohydrates while releasing oxygen as a byproduct. The study of land plants is called phytology.
On a microscopic level, the cells of charophytes are broadly similar to those of chlorophyte green algae, but differ in that in cell division the daughter nuclei are separated by a phragmoplast. They are eukaryote, with a cell wall composed of cellulose and surrounded by two membranes. The latter include , which conduct photosynthesis and store food in the form of starch, and are characteristically pigmented with chlorophylls a and b, generally giving them a bright green color. Embryophyte cells also generally have an enlarged central vacuole enclosed by a vacuolar membrane or tonoplast, which maintains cell turgor and keeps the plant rigid.
In common with all groups of multicellular algae they have a life cycle which involves alternation of generations. A multicellular haploid generation with a single set of – the gametophyte – produces sperm and eggs which fuse and grow into a diploid multicellular generation with twice the number of chromosomes – the sporophyte which produces haploid at maturity. The spores divide repeatedly by mitosis and grow into a gametophyte, thus completing the cycle. Embryophytes have two features related to their reproductive cycles which distinguish them from all other plant lineages. Firstly, their gametophytes produce sperm and eggs in multicellular structures (called 'antheridium' and 'archegonium'), and fertilization of the ovum takes place within the archegonium rather than in the external environment. Secondly, the initial stage of development of the fertilized egg (the zygote) into a diploid multicellular sporophyte, takes place within the archegonium where it is both protected and provided with nutrition. This second feature is the origin of the term 'embryophyte' – the fertilized egg develops into a protected embryo, rather than dispersing as a single cell. In the the sporophyte remains dependent on the gametophyte, while in all other embryophytes the sporophyte generation is dominant and capable of independent existence.
Embryophytes also differ from algae by having metamers. Metamers are repeated units of development, in which each unit derives from a single cell, but the resulting product tissue or part is largely the same for each cell. The whole organism is thus constructed from similar, repeating parts or metamers. Accordingly, these plants are sometimes termed 'metaphytes' and classified as the group Metaphyta (but Haeckel's definition of Metaphyta places some algae in this group). In all land plants a disc-like structure called a phragmoplast forms where the cell will divide, a trait only found in the land plants in the Streptophytina lineage, some species within their relatives Coleochaetales, Charales and Zygnematales, as well as within subaerial species of the algae order Trentepohliales, and appears to be essential in the adaptation towards a terrestrial life style.
Some time during the Ordovician, streptophytes invaded the land and began the evolution of the embryophyte land plants. Present day embryophytes form a clade. Becker and Marin speculate that land plants evolved from streptophytes because living in fresh water pools pre-adapted them to tolerate a range of environmental conditions found on land, such as exposure to rain, tolerance of temperature variation, high levels of ultra-violet light, and seasonal dehydration.
The preponderance of molecular evidence as of 2006 suggested that the groups making up the embryophytes are related as shown in the cladogram below (based on Qiu et al. 2006 with additional names from Crane et al. 2004).
An updated phylogeny of Embryophytes based on the work by Novíkov & Barabaš-Krasni 2015 and Hao and Xue 2013 with plant taxon authors from Anderson, Anderson & Cleal 2007 and some additional clade names. Puttick et al./Nishiyama et al. are used for the basal clades.
They are usually studied together because of their many similarities. All three groups share a haploid-dominant (gametophyte) life cycle and unbranched (the plant's diploid generation). These traits appear to be common to all early diverging lineages of non-vascular plants on the land. Their life-cycle is strongly dominated by the haploid gametophyte generation. The sporophyte remains small and dependent on the parent gametophyte for its entire brief life. All other living groups of land plants have a life cycle dominated by the diploid sporophyte generation. It is in the diploid sporophyte that vascular tissue develops. In some ways, the term "non-vascular" is a misnomer. Some mosses and liverworts do produce a special type of vascular tissue composed of complex water-conducting cells. However, this tissue differs from that of "vascular" plants in that these water-conducting cells are not lignified. It is unlikely that the water-conducting cells in mosses are homologous with the vascular tissue in "vascular" plants.
Like the vascular plants, they have differentiated stems, and although these are most often no more than a few centimeters tall, they provide mechanical support. Most have leaves, although these typically are one cell thick and lack veins. They lack true roots or any deep anchoring structures. Some species grow a filamentous network of horizontal stems, but these have a primary function of mechanical attachment rather than extraction of soil nutrients (Palaeos 2008).
During the Devonian period, vascular plants diversified and spread to many different land environments. In addition to vascular tissues which transport water throughout the body, tracheophytes have an outer layer or cuticle that resists drying out. The sporophyte is the dominant generation, and in modern species develops leaves, stems and roots, while the gametophyte remains very small.
Although the living lycophytes are all relatively small and inconspicuous plants, more common in the moist tropics than in temperate regions, during the Carboniferous period tree-like lycophytes (such as Lepidodendron) formed huge forests that dominated the landscape.
The euphyllophytes, making up more than 99% of living vascular plant species, have large 'true' leaves (megaphylls), which effectively grow from the sides or the apex, via marginal or apical meristems. One theory is that megaphylls evolved from three-dimensional branching systems by first '' – flattening to produce a two dimensional branched structure – and then 'webbing' – tissue growing out between the flattened branches. Others have questioned whether megaphylls evolved in the same way in different groups.
Ferns are a large and diverse group, with some 12,000 species. A stereotypical fern has broad, much divided leaves, which grow by unrolling.
Meiosis in sexual land plants provides a direct mechanism for DNA repair in reproductive tissues.Hörandl E. Apomixis and the paradox of sex in plants. Ann Bot. 2024 Mar 18:mcae044. doi: 10.1093/aob/mcae044. Epub ahead of print. PMID 38497809 Sexual reproduction appears to be needed for maintaining long-term genome integrity and only infrequent combinations of extrinsic and intrinsic factors allow for shifts to asexuality.
|
|