An electric fence is a barrier that uses to deter humans and other animals from crossing a boundary. Most electric fences are used for Agriculture purposes and other non-human animal control. They are also commonly used to protect high-security areas such as military installations or prisons, where potentially lethal voltages may be applied. Virtual electric fences for livestock using GPS technology have also been developed.
Depending on the fenced area and the remoteness of its location, fence energisers may be hooked into a permanent electrical circuit or run by lead-acid or dry cell batteries or a smaller battery kept charged by a solar panel. The power consumption of a fence in good condition is low, and so a lead-acid battery powering several hundred metres of the fence may last for several weeks on a single charge. Certain energisers even have the ability to be powered by multiple sources. For shorter periods, dry cell batteries may be used.
Early alternating current (AC) fence chargers used a transformer and a mechanically driven switch to generate the electrical pulses. The pulses were wide and the voltage unpredictable, with no-load peaks in excess of 10,000 Volt and a rapid drop in voltage as the fence leakage increased, which had the liability of the switch mechanism failing. Later systems replaced the switch with a solid-state circuit. This circuit had an improvement in longevity but no change in pulse width or voltage control.
"Weed burner" fence chargers were popular for a time and featured a longer-duration output pulse that would destroy weeds touching the fence. These were responsible for many grass fires when used during dry weather. Although still available, they have declined in popularity.
The electrified fence itself must be kept insulated from the earth and from any materials that will conduct electricity and ignite or short out the fence. Fencing must therefore avoid vegetation, and cannot be attached directly to wood or metal posts. Typically, wooden or metal posts are driven into the ground and plastic or porcelain insulators are attached to them, or plastic posts are used. The conducting material is then attached to the posts.
Palisade electric fences are used in most countries, particularly where there is little vegetation to short-circuit the fence or where the costs of security personnel are high in relation to automated security equipment. The electric pulse is a strong deterrent for criminals, while the palisade fence is mechanically stronger than a typical Wire rope electric fence, being able to withstand impact from wildlife, small falling trees and .
Due to the high levels of crime in South Africa, it is common for residential houses to have perimeter defences. The City of Johannesburg promotes the use of palisade fencing over opaque, usually brick, walls as criminals cannot hide as easily behind the fence. The City of Johannesburg manual on safety describes best practices and maintenance of palisade fencing, such as not growing vegetation in front of palisades as this allows criminals to make an unseen breach.
In many countries such as Switzerland or Austria, virtual electric fences are currently not allowed due to concerns about animal welfare. In 2023 and 2024, industry-funded studies by the Venn Research Association and Agroscope found their effect on goats and cows to be comparable to traditional electric fences.
David H. Wilson obtained United States Patent 343,939 in 1886, combining protection, an alarm bell, and telephone communications. He constructed an experimental 30-mile electric fence energised by a water wheel in Texas in 1888, which proved successful at keeping cattle separated, but was deemed impractical as a business venture."ELECTRIC FENCE,"
accessed 4 August 2011. Published by the Texas State Historical Association.
In 1905, the Russian army improvised electric fences during the Russo-Japanese War at Port Arthur. In 1915, during World War I, the German army installed the "Wire of Death", an electrified fences along the border between Belgium and the NetherlandsMaartje M. Abbenhuis The art of staying neutral: the Netherlands in the First World War, 1914-1918, Amsterdam University Press, 2006 pages 164-168 to prevent unauthorised movement of people across the border. The fences covered and consisted of several strands of copper wire, backed with barbed wire, and energised to several thousand volts. An estimated 3,000 human fatalities, as well as the destruction of livestock, were caused by the fence.
Electric fences were used to control livestock in the United States in the early 1930s, and electric fencing technology developed in both the United States and New Zealand.
An early application of the electric fence for livestock control was developed in 1936–1937 by New Zealand inventor Bill Gallagher. Built from a car ignition trembler coil set, Gallagher used the device to keep his horse from scratching itself against his car. Gallagher later started the Gallagher Group to improve and market the design. In 1962, another New Zealand inventor, Doug Phillips, invented the non-shortable electric fence based on capacitor discharge. "...while working as a scientist at Ruakura Agricultural Research Centre in the 1950s..." Ag Heritage This significantly increased the range an electric fence could be used from a few hundred metres to , and reduced the cost of fencing by more than 80%. "50 YEARS OF POWER FENCING", V. Jones, Proceedings of the New Zealand Grassland Association 49: 145-149 (1988) The non-shortable electric fence was patented by Phillips and by 1964 was manufactured by Plastic Products, a New Zealand firm, under the name "Waikato Electric Fence". Since then, a variety of plastic insulators are now used on farms throughout the world.
By 1939, public safety concerns in the United States prompted Underwriters' Laboratories to publish a bulletin on electric shock from electric fences, leading to the ANSI/UL standard No. 69 for electric fence controllers.Mark W. Kroll, Taser conducted electrical weapons: physiology, pathology, and law, Springer, 2009 pp. 18-19
In 1969 Robert B. Cox, a farmer in Adams County, Iowa, invented an improved electric fence bracket and was issued United States Patent No. 3,516,643 on 23 June 1970. This bracket improved electric fences by keeping the wire high enough above the ground and far enough away from the fence to permit grass and weeds growing beneath the wire to be mowed. The brackets attached to the posts by what may be called a "pivot bind" or "torsion-lock". The weight of the bracket, the attached insulator and the electric wire attached to the insulator bind the bracket to the post.
Electric fences have improved significantly over the years. Improvements include:
Its disadvantages include the potential for the entire fence to be disabled by a break in the conducting wire, Short circuit if the conducting wire contacts any non-electrified component that may make up the rest of the fence, power failure, or forced disconnection because of the risk of fires starting by dry vegetation touching an electrified wire. Other disadvantages can be lack of visibility and the potential to shock an animal passing by that accidentally touches or brushes the fence.
Many fences are made entirely of standard smooth or high-tensile wire, although high quality synthetic fencing materials are also beginning to be used as part of permanent fences, particularly when visibility of the fence is a concern.
Conventional agricultural fencing of any type may be strengthened by the addition of a single electric line mounted on insulators attached to the top or front of the fence. A similar wire mounted close to the ground may be used to prevent from excavating beneath other fencing. Substandard conventional fencing can also be made temporarily usable until proper repairs are made by the addition of a single electric line set on a "stand-off" insulator.
Electric materials are also used for the construction of temporary fencing, particularly to support the practice of managed intensive grazing (also known as rotational or "strip" grazing). It is also popular in some places for confining horses and packhorse overnight when trail riding, hunting, or at competitions such as endurance riding and competitive trail riding. Typically, one or more strands of wire, synthetic tape or cord are mounted on metal or plastic posts with stakes at the bottom, designed to be driven into the ground with the foot. For a hand-tightened temporary fence of electrified rope or web in a small area, these are usually spaced at no more than 12 to 15 feet (about four metres) to prevent the fencing material from sagging and touching the ground. Larger areas where tools are used to stretch wire may be able to set step-in posts at larger distances without risk that the fencing material will sag.
With temporary electric fencing, a large area can be fenced off in a short period. Temporary fencing that is intended to be left in place for several weeks or months may be given additional support by the use of steel (which are quickly driven in with hand tools and unearthed with relative ease, using a leverage device), to help keep the fence upright, particularly at corners. Livestock owners using rotational grazing in set patterns that are similar from one year to the next may permanently drive a few permanent wooden fence posts in strategic locations.
Portable fence energisers are made for temporary fencing, powered solely by batteries, or by a battery kept charged by a small solar panel. Rapid laying-out and removal of multiple-strand temporary electric fencing over a large area may be done using a set of reels mounted on a tractor or all-terrain vehicle.
For sheep, poultry, and other smaller animals, plastic electric netting may be mounted on insulating stakesthis is also effective at keeping out some predators such as .
In practice, once most animals have learned of the unpleasant consequences of touching the fence they tend to avoid it long after even when it is inactive. However, some animals learn to avoid the shock, either by running under the fence quickly between pulses, or by pushing other individuals through the fence. Animals with thick woolly coats (such as sheep or highland cattle) may learn to push through the fence themselves, using their coats as electrical insulation. Some animals also learn to recognise the slight clicking sound made by some electric fences and thus can sense when the fence is off.
The value of electrified fences is offset by lethal electric shock threats to a number of species, including vulnerable and endangered species such as African ground pangolin ( Smutsia temminckii), Southern African Pythonidae ( Python natalensis), and a number of tortoise species.Heard, H.W. and Stephenson, A. 1987. Electrification of a fence to control the movements of black-backed jackals. South African Journal of Wildlife Research 17: 20–24.Jacobsen, N.H.G., Newbery, R.E., De Wet, M.J., Viljoen, P.C. and Pietersen, E. 1991. A contribution of the ecology of the Steppe Pangolin Manis temminckii in the Transvaal. Zeitschrift für Säugetierkunde 56: 94–100.Burger, M. and Branch, W.R. 1994. Tortoise mortality caused by electric fences in the Thomas Baines Nature Reserve. South African Journal of Wildlife Research 24: 32–37.
In South Africa it is estimated that more than 31,500 reptiles (predominantly tortoises) are killed on electrified fences annually. The estimate for Ground pangolin killed by electric shock is 377–1,028 annually. The impacts of electrified fences on other species, such as ( Varanus spp), have not been quantified.
are Bipedalism, walking on their hind legs with their front legs and tail held off the ground, leaving their ventral surface unprotected. This makes them particularly prone to accidental lethal electric shock on electrified fences. Depending on the electrified fence's design and height of the lower lines, the pangolin's head or exposed belly come into contact with the electrified wire(s). The initial shock will causes the pangolin to adopt its defence of rolling into a ball, often resulting in it inadvertently wrapping itself around the electrified wire.
An animal wrapped around the electric wire receives successive shocks, which in the case of pangolins results in them curling into an ever tighter ball around the live wire. The repeated electrical pulses ultimately kill the pangolin. Those not killed outright usually succumb to exposure, dehydration or starvation. Pangolins found dead on electric fences often have epidermal burnsthese sometimes burning through the scales. Internal injuries may also be significant. Pangolins found alive while wrapped around an electrified wire may suffer debilitating neurological damage if they have experienced prolonged exposure to the electric current. These ultimately succumb even when released.
In practical terms, security electric fences are a type of perimeter intrusion detection sensor array that act as a (or part of a) physical barrier, a psychological deterrent to potential intruders, and as part of a security alarm system.
Non-lethal electric fences are used by both private and government-sector bodies to prevent trespass. These include freight carriers, auto auctions, equipment rental companies, auto dealers, housing communities, commercial factories or warehouses, prisons, military bases, and government buildings. Many of these electric fences act as monitored security alarm systems in addition to causing an uncomfortable shock. Electrified palisade fences are used to protect isolated property and high security facilities, but also around some residential homes.
They can also be used inside a building, for example as a grid behind windows or skylights to prevent people from climbing through. They have also been used on yachts and on large ships to deter pirates.
Electric fences are occasionally employed to discourage suicide attempts on tall structures, and to reduce the incidence of graffiti and other petty crime.
Due to the high levels of crime in South Africa, it is common for residential houses to have perimeter defences, such as electric fences. Electrified palisade fences are commonly used.
Types of security electric fences include:
12-foot-high "stun–lethal" fences have been in use for some time in many US state prisons, like those in Arizona. The Federal Department of Corrections added them in 2005 to two prisons in Coleman, Florida, and prisons in Tucson; Terre Haute, Indiana; Hazelton, West Virginia; Pine Knot, Kentucky; and Pollock, Louisiana.
A "stun–lethal" fence may also consist of two fences; one set of wires forming a conventional pulsed DC non-lethal fence, the second set (interleaved with the first) forming a 6.6kV AC lethal fence, energized when the DC fence detects an intruder. Alternatively it may consist of a single, AC or pulsed DC fence capable of running in "safe", "unsafe" or "lethal" modes by varying the DC pulse energy, AC/DC fence voltage or fence on–off duty cycle.
In 1915, during World War I, the Germany occupiers of Belgium closed off the border with neutral Netherlands, using a 300 km electric fence running from Vaals to the Scheldt. Germany also erected a similar fence to isolate thirteen Alsatian villages from Switzerland.
Electric fences were used to guard the concentration camps of Nazi Germany during World War II, where potentially lethal voltages and currents were employed, continuously rather than in pulses. Some prisoners used the electric barbed-wire fence to kill themselves. Many died at Mauthausen by being thrown onto the high-voltage wire. One was Georg Benjamin, physician and anti-National Socialist activist, brother to scholar Walter Benjamin. Georg Benjamin's transfer to the Mauthausen concentration camp was tantamount to a death sentence. The Gestapo's transport order expressly stated that a return of the communist and Jew was undesirable.Lutz Herden: The Brother - Literature Bernd-Peter Lange remembers the doctor and communist Georg Benjamin. In: Friday, January 9, 2020, p. 17 The camp's death list states the cause of death as "suicide due to high voltage".Marianne Brentzel: The power woman Hilde Benjamin 1902–1989. Links, Berlin 1997, , p. 284 ff. Similarly, the message from the command of the Mauthausen concentration camp to the widow speaks of “suicide by touching the power line,” while the death certificate only mentions that “Doctor Israel Georg Benjamin” died on August 26, 1942 at 1:30 a.m.Hilde Benjamin: . Hirzel Verlag, Leipzig 1987, p. 60 and pictures 62 and 63 Hilde Spiel, on the other hand, writes in her autobiography that Benjamin was killed. Benjamin's grave is in the Wilmersdorfer Waldfriedhof Stahnsdorf in field B IW II-6.Alexandra Kleinlercher: Between truth and poetry: Anti-Semitism and National Socialism with Heimito von Doderer . Böhlau, Vienna 2011, , p. 95 A former Nazi prisoner testified to the American Military Tribunal in Dachau, Germany on August 13, 1947 that Jews were forced to jump into electrically-charged fences to be burned to death. The witness, who preferred to remain unidentified because of fear of reprisals, testified that he saw Franz Koffler, one of the accused, beat five Jews and order them to jump into the wired fences. Two of the Jews accepted their fate and were immediately electrocuted, but the other three, a father and two sons, held back. The father begged that his life be sacrificed but his sons’ spared, but Koffler and several other guards picked up the three and tossed them to their deaths.
During the Algerian War the French erected the electrified Morice Line.
Sections of the inner German border were lined with a 3 m (10 ft) high electric fence to deter potential defectors from East Germany."E. Germany Builds Electric Fence", The Times, 28 March 1984 Similarly, the Czechoslovak border was lined with high electric fence during Cold War to prevent emigration from Czechoslovakia.
Electric fences are used in similar fashion at some high-security prisons and certain other installations. Typically a nonelectric fence is constructed on either side of such an installation, or the deadly current is carried out of casual reach atop a wall.
North Korea uses electric fences to seal off parts of its border with South Korea.
Other uses
Interference and unwanted effects
See also
Notes
External links
|
|