In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be Polarisability by an applied electric field. When a dielectric material is placed in an electric field, do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly Chemical bond molecules, those molecules not only become polarised, but also reorient so that their Symmetry axis align to the field.
The study of dielectric properties concerns storage and dissipation of electric and magnetic energy in materials.Arthur R. von Hippel, in his seminal work, Dielectric Materials and Applications, stated: " Dielectrics... are not a narrow class of so-called insulators, but the broad expanse of nonmetals considered from the standpoint of their interaction with electric, magnetic or electromagnetic fields. Thus we are concerned with gases as well as with liquids and solids and with the storage of electric and magnetic energy as well as its dissipation." (p. 1) (Technology Press of MIT and John Wiley, NY, 1954). Dielectrics are important for explaining various phenomena in electronics, optics, solid-state physics and cell biophysics.
The term dielectric was coined by William Whewell (from + electric) in response to a request from Michael Faraday.James, Frank A.J.L., editor. The Correspondence of Michael Faraday, Volume 3, 1841–1848, The Institution of Electrical Engineers, London, United Kingdom, 1996.
A perfect dielectric is a material with zero electrical conductivity (cf. perfect conductor infinite electrical conductivity), thus exhibiting only a displacement current; therefore it stores and returns electrical energy as if it were an ideal capacitor.
It is defined as the constant of proportionality (which may be a tensor) relating an electric field to the induced dielectric polarisation density such that
where is the electric permittivity of free space.
The susceptibility of a medium is related to its relative permittivity by
So in the case of a classical vacuum,
The electric displacement is related to the polarisation density by
That is, the polarisation is a convolution of the electric field at previous times with time-dependent susceptibility given by . The upper limit of this integral can be extended to infinity as well if one defines for . An instantaneous response corresponds to Dirac delta function susceptibility .
It is more convenient in a linear system to take the Fourier transform and write this relationship as a function of frequency. Due to the convolution theorem, the integral becomes a simple product,
The susceptibility (or equivalently the permittivity) is frequency dependent. The change of susceptibility with respect to frequency characterises the dispersion properties of the material.
Moreover, the fact that the polarisation can only depend on the electric field at previous times (i.e., for ), a consequence of causality, imposes Kramers–Kronig constraints on the real and imaginary parts of the susceptibility .
This can be reduced to a simple dipole using the superposition principle. A dipole is characterised by its dipole moment, a vector quantity shown in the figure as the blue arrow labeled M. It is the relationship between the electric field and the dipole moment that gives rise to the behaviour of the dielectric. (Note that the dipole moment points in the same direction as the electric field in the figure. This is not always the case, and is a major simplification, but is true for many materials.)
When the electric field is removed, the atom returns to its original state. The time required to do so is called relaxation time; an exponential decay.
This is the essence of the model in physics. The behaviour of the dielectric now depends on the situation. The more complicated the situation, the richer the model must be to accurately describe the behaviour. Important questions are:
The relationship between the electric field E and the dipole moment M gives rise to the behaviour of the dielectric, which, for a given material, can be characterised by the function F defined by the equation:
When both the type of electric field and the type of material have been defined, one then chooses the simplest function F that correctly predicts the phenomena of interest. Examples of phenomena that can be so modelled include:
When an external electric field is applied, the distance between charges within each permanent dipole, which is related to , remains constant in orientation polarisation; however, the direction of polarisation itself rotates. This rotation occurs on a timescale that depends on the torque and surrounding local viscosity of the molecules. Because the rotation is not instantaneous, dipolar polarisations lose the response to electric fields at the highest frequencies. A molecule rotates about 1 radian per picosecond in a fluid, thus this loss occurs at about 1011 Hz (in the microwave region). The delay of the response to the change of the electric field causes friction and heat.
When an external electric field is applied at infrared frequencies or less, the molecules are bent and stretched by the field and the molecular dipole moment changes. The molecular vibration frequency is roughly the inverse of the time it takes for the molecules to bend, and this distortion polarisation disappears above the infrared.
If a crystal or molecule consists of atoms of more than one kind, the distribution of charges around an atom in the crystal or molecule leans to positive or negative. As a result, when lattice vibrations or molecular vibrations induce relative displacements of the atoms, the centers of positive and negative charges are also displaced. The locations of these centers are affected by the symmetry of the displacements. When the centers do not correspond, polarisation arises in molecules or crystals. This polarisation is called ionic polarisation.
Ionic polarisation causes the ferroelectric effect as well as dipolar polarisation. The ferroelectric transition, which is caused by the lining up of the orientations of permanent dipoles along a particular direction, is called an order-disorder phase transition. The transition caused by ionic polarisations in crystals is called a displacive phase transition.
All cells in animal body tissues are electrically polarised – in other words, they maintain a voltage difference across the cell's plasma membrane, known as the membrane potential. This electrical polarisation results from a complex interplay between and ion channels.
In neurons, the types of ion channels in the membrane usually vary across different parts of the cell, giving the , axon, and cell body different electrical properties. As a result, some parts of the membrane of a neuron may be excitable (capable of generating action potentials), whereas others are not.
This is one instance of a general phenomenon known as material dispersion: a frequency-dependent response of a medium for wave propagation.
When the frequency becomes higher:
In the frequency region above ultraviolet, permittivity approaches the constant ε0 in every substance, where ε0 is the permittivity of the free space. Because permittivity indicates the strength of the relation between an electric field and polarisation, if a polarisation process loses its response, permittivity decreases.
In physics, dielectric relaxation refers to the relaxation response of a dielectric medium to an external, oscillating electric field. This relaxation is often described in terms of permittivity as a function of frequency, which can, for ideal systems, be described by the Debye equation. On the other hand, the distortion related to ionic and electronic polarisation shows behaviour of the resonance or oscillator type. The character of the distortion process depends on the structure, composition, and surroundings of the sample.
where ε∞ is the permittivity at the high frequency limit, where εs is the static, low frequency permittivity, and τ is the characteristic relaxation time of the medium. Separating into the real part and the imaginary part of the complex dielectric permittivity yields:
Note that the above equation for is sometimes written with in the denominator due to an ongoing sign convention ambiguity whereby many sources represent the time dependence of the complex electric field with whereas others use . In the former convention, the functions and representing real and imaginary parts are given by whereas in the latter convention . The above equation uses the latter convention.
The dielectric loss is also represented by the loss tangent:
This relaxation model was introduced by and named after the physicist Peter Debye (1913).Debye, P. (1913), Ver. Deut. Phys. Gesell. 15, 777; reprinted 1954 in collected papers of Peter J.W. Debye. Interscience, New York It is characteristic for dynamic polarisation with only one relaxation time.
Paraelectricity can occur in crystal phases where electric dipoles are unaligned and thus have the potential to align in an external electric field and weaken it.
Most dielectric materials are paraelectrics. A specific example of a paraelectric material of high dielectric constant is strontium titanate.
The lithium niobate crystal is ferroelectric below 1430 Kelvin, and above this temperature it transforms into a disordered paraelectric phase. Similarly, other also exhibit paraelectricity at high temperatures.
Paraelectricity has been explored as a possible refrigeration mechanism; polarising a paraelectric by applying an electric field under adiabatic conditions raises the temperature, while removing the field lowers the temperature. A heat pump that operates by polarising the paraelectric, allowing it to return to ambient temperature (by dissipating the extra heat), bringing it into contact with the object to be cooled, and finally depolarising it, would result in refrigeration.
Generally, strontium titanate () is used for devices operating at low temperatures, while barium strontium titanate () substitutes for room temperature devices. Other potential materials include microwave dielectrics and carbon nanotube (CNT) composites.
In 2013, multi-sheet layers of strontium titanate interleaved with single layers of strontium oxide produced a dielectric capable of operating at up to 125 GHz. The material was created via molecular beam epitaxy. The two have mismatched crystal spacing that produces strain within the strontium titanate layer that makes it less stable and tunable.
Systems such as have a paraelectric–ferroelectric transition just below ambient temperature, providing high tunability. Films suffer significant losses arising from defects.
The most obvious advantage to using such a dielectric material is that it prevents the conducting plates, on which the charges are stored, from coming into direct electrical contact. More significantly, however, a high permittivity allows a greater stored charge at a given voltage. This can be seen by treating the case of a linear dielectric with permittivity ε and thickness d between two conducting plates with uniform charge density σε. In this case the charge density is given by
and the capacitance per unit area by
From this, it can easily be seen that a larger ε leads to greater charge stored and thus greater capacitance.
Dielectric materials used for capacitors are also chosen such that they are resistant to ionisation. This allows the capacitor to operate at higher voltages before the insulating dielectric ionises and begins to allow undesirable current.
The research was part of an effort to provide the Army with highly-tunable, microwave-compatible materials for broadband electric-field tunable devices, which operate consistently in extreme temperatures. This work improved tunability of bulk barium strontium titanate, which is a thin film enabler for electronics components.
In a 2004 research paper, U.S. ARL researchers explored how small concentrations of acceptor dopants can dramatically modify the properties of ferroelectric materials such as BST.
Researchers "doped" BST thin films with magnesium, analyzing the "structure, microstructure, surface morphology and film/substrate compositional quality" of the result. The Mg doped BST films showed "improved dielectric properties, low leakage current, and good tunability", meriting potential for use in microwave tunable devices.
Solid dielectrics are perhaps the most commonly used dielectrics in electrical engineering, and many solids are very good insulators. Some examples include porcelain, glass, and most . Air, nitrogen and sulfur hexafluoride are the three most commonly used gaseous dielectrics.
Applications
Capacitors
Dielectric resonator
BST thin films
Some practical dielectrics
See also
Further reading
External links
|
|