Diamagnetism is the property of materials that are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted by a magnetic field. Diamagnetism is a quantum mechanical effect that occurs in all materials; when it is the only contribution to the magnetism, the material is called diamagnetic. In paramagnetic and ferromagnetic substances, the weak diamagnetic force is overcome by the attractive force of in the material. The magnetic permeability of diamagnetic materials is less than the permeability of vacuum, μ0. In most materials, diamagnetism is a weak effect which can be detected only by sensitive laboratory instruments, but a superconductor acts as a strong diamagnet because it entirely expels any magnetic field from its interior (the Meissner effect).
Diamagnetism was first discovered when Anton Brugmans observed in 1778 that bismuth was repelled by magnetic fields. In 1845, Michael Faraday demonstrated that it was a property of matter and concluded that every material responded (in either a diamagnetic or paramagnetic way) to an applied magnetic field. On a suggestion by William Whewell, Faraday first referred to the phenomenon as diamagnetic (the prefix dia- meaning through or across), then later changed it to diamagnetism.
A simple rule of thumb is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic: If all electrons in the particle are paired, then the substance made of this particle is diamagnetic; If it has unpaired electrons, then the substance is paramagnetic.
Diamagnetic materials, like water, or water-based materials, have a relative magnetic permeability that is less than or equal to 1, and therefore a magnetic susceptibility less than or equal to 0, since susceptibility is defined as . This means that diamagnetic materials are repelled by magnetic fields. However, since diamagnetism is such a weak property, its effects are not observable in everyday life. For example, the magnetic susceptibility of diamagnets such as water is . The most strongly diamagnetic material is bismuth, , although pyrolytic carbon may have a susceptibility of in one plane. Nevertheless, these values are orders of magnitude smaller than the magnetism exhibited by paramagnets and ferromagnets. Because χv is derived from the ratio of the internal magnetic field to the applied field, it is a dimensionless value.
In rare cases, the diamagnetic contribution can be stronger than paramagnetic contribution. This is the case for gold, which has a magnetic susceptibility less than 0 (and is thus by definition a diamagnetic material), but when measured carefully with X-ray magnetic circular dichroism, has an extremely weak paramagnetic contribution that is overcome by a stronger diamagnetic contribution.
+Notable diamagnetic materials !Material!! χv × | |
Superconductor | −105 |
Pyrolytic carbon | −40.9 |
Bismuth | −16.6 |
Neon | −6.74 |
Mercury | −2.9 |
Gold | −3.5 |
Silver | −2.6 |
Diamond | −2.1 |
Lead | −1.8 |
Graphite | −1.6 |
Copper | −1.0 |
Water | −0.91 |
A thin slice of pyrolytic graphite, which is an unusually strongly diamagnetic material, can be stably floated in a magnetic field, such as that from rare earth permanent magnets. This can be done with all components at room temperature, making a visually effective and relatively convenient demonstration of diamagnetism.
The Radboud University Nijmegen, the Netherlands, has conducted experiments where water and other substances were successfully levitated. Most spectacularly, a live frog (see figure) was levitated.
In September 2009, NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California announced it had successfully levitated mice using a superconducting magnet, an important step forward since mice are closer biologically to humans than frogs. JPL said it hopes to perform experiments regarding the effects of microgravity on bone and muscle mass.
Recent experiments studying the growth of protein crystals have led to a technique using powerful magnets to allow growth in ways that counteract Earth's gravity.
A simple homemade device for demonstration can be constructed out of bismuth plates and a few permanent magnets that levitate a permanent magnet.
The Bohr–Van Leeuwen theorem proves that there cannot be any diamagnetism or paramagnetism in a purely classical system. However, the classical theory of Langevin for diamagnetism gives the same prediction as the quantum theory. The classical theory is given below.
The magnetic moment of a current loop is equal to the current times the area of the loop. Suppose the field is aligned with the axis. The average loop area can be given as , where is the mean square distance of the electrons perpendicular to the axis. The magnetic moment is therefore
If the distribution of charge is spherically symmetric, we can suppose that the distribution of coordinates are independent and identically distributed. Then , where is the mean square distance of the electrons from the nucleus. Therefore, . If is the number of atoms per unit volume, the volume diamagnetic susceptibility in SI units is
where is the Fermi energy. This is equivalent to , exactly times Pauli paramagnetic susceptibility, where is the Bohr magneton and is the density of states (number of states per energy per volume). This formula takes into account the spin degeneracy of the carriers (spin-1/2 electrons).
In doped semiconductors the ratio between Landau and Pauli susceptibilities may change due to the effective mass of the charge carriers differing from the electron mass in vacuum, increasing the diamagnetic contribution. The formula presented here only applies for the bulk; in confined systems like , the description is altered due to quantum confinement. Additionally, for strong magnetic fields, the susceptibility of delocalized electrons oscillates as a function of the field strength, a phenomenon known as the De Haas–Van Alphen effect, also first described theoretically by Landau.
|
|