In audio engineering, a fade is a gradual increase or decrease in the level of an audio signal. The term can also be used for film cinematography or theatre lighting in much the same way (see fade (filmmaking) and fade (lighting)).
In sound recording and reproduction a song may be gradually reduced to silence at its end ( fade-out), or may gradually increase from silence at the beginning ( fade-in). Fading-out can serve as a recording solution for pieces of music that contain no obvious ending. Quick fade-ins and -outs can also be used to change the characteristics of a sound, such as to soften the attack in vocal and percussion sounds.
Turntablism and DJs in hip hop music use faders on a DJ mixer, notably the horizontal crossfader, in a rapid fashion while simultaneously manipulating two or more phonograph (or other sound sources) to create scratching and develop beats. Club DJs in house music and techno use DJ mixers, two or more sound sources (two record players, two iPods, etc.) along with a skill called beatmatching (aligning the beats and tempos of two records) to make seamless dance mixes for dancers at , and dance parties.
Gustav Holst's "Neptune, the mystic", part of the orchestral suite The Planets written between 1914 and 1916, is another early example of music having a fade-out ending during performance. Holst stipulates that the women's choruses are "to be placed in an adjoining room, the door of which is to be left open until the last bar of the piece, when it is to be slowly and silently closed", and that the final bar (scored for choruses alone) is "to be repeated until the sound is lost in the distance"."The Planets" (full orchestral score): Goodwin & Tabb, Ltd., London, 1921 Although commonplace today, the effect bewitched audiences in the era before widespread recorded sound—after the initial 1918 run-through, Holst's daughter Imogen Holst (in addition to watching the charwomen dancing in the aisles during "Jupiter") remarked that the ending was "unforgettable, with its hidden chorus of women's voices growing fainter and fainter ... until the imagination knew no difference between sound and silence"."The Great Composers and Their Music", Vol. 50, Marshall Cavendish Ltd., London, 1985. I.H. as quoted on p1218
The technique of ending a spoken or musical recording by fading out the sound goes back to the earliest days of recording. In the era of mechanical (pre-electrical) recording, this could only be achieved by either moving the sound source away from the recording horn, or by gradually reducing the volume at which the performer(s) were singing, playing or speaking. With the advent of electrical recording, smooth and controllable fadeout effects could be easily achieved by simply reducing the input volume from the microphones using the fader on the mixing desk. The first experimental study on the effect of a fade-out showed that a version of a musical piece with fade-out in comparison to the same piece with a cold end prolonged the perceived duration by 2.4 seconds. This is called the "Pulse Continuity Phenomenon" and was measured by a tapping-along task to measure participants’ perception of pulsation.
An 1894 78 rpm record called "The Spirit of '76" features a narrated musical vignette with martial fife-and-drum that gets louder as it nears the listener, and quieter as it moves away. There are early examples that appear to bear no obvious relationship to movement. One is "Barkin' Dog" (1919) by the Ted Lewis Jazz Band. Another contender is "America" (1918), a patriotic piece by the chorus of evangelist Billy Sunday. By the early 1930s, longer songs were being put on both sides of records, with the piece fading out at the end of side one and fading back in at the beginning of side two. Records at the time held only about two to five minutes of music per side. The segue allowed for longer songs (such as Count Basie's "Miss Thing"), symphonies and live concert recordings.
However, shorter songs continued to use the fade-out for unclear reasons—for example, Fred Astaire's movie theme "Flying Down to Rio" (1933). Even using fade-out as a segue device does not seem obvious, though we certainly take it for granted today. It is possible that movies were an influence here. Fade-ins and fade-outs are often used as cinematic devices that begin and end scenes; film language that developed at the same time as these early recordings. The term fade-out itself is of cinematic origin, appearing in print around 1918. And jazz, a favorite of early records, was a popular subject of early movies too. The same could be said for radio productions. Within a single programme of a radio production, many different types of fade can be applied. When mixing from speech to music, there are a few ways that fade can be used. Here are three examples.
Though relatively rare, songs can fade out then fade back in. Some examples of this are "Helter Skelter" and "Strawberry Fields Forever" by The Beatles, "Suspicious Minds" by Elvis Presley, "Shine On Brightly" by Procol Harum, "Sunday Bloody Sunday" by John Lennon and Yoko Ono, "That Joke Isn't Funny Anymore" by The Smiths,Goddard, Simon (2009). Mozipedia: The Encyclopedia of Morrissey and The Smiths. London: Ebury Press. "Thank You" by Led Zeppelin, "In Every Dream Home A Heartache" by Roxy Music, "It's Only Money, Pt. 2" by Argent, "The Great Annihilator" by Swans, "(Reprise) Sandblasted Skin" by Pantera, "Illumination Theory" and "At Wit's End" by Dream Theater, "Future" by Paramore, "" by MF Doom, "Outro" by M83, "Cold Desert" by Kings of Leon, and "The Edge Of The World" by DragonForce.
More recently: "At the meta-song level, the prevalence of pre-taped sequences (for shops, pubs, parties, concert intervals, aircraft headsets) emphasizes the importance of flow. The effect on radio pop programme form is a stress on continuity achieved through the use of fades, voice-over links, twin-turntable mixing and connecting jingles."
The level of the signal as a function of time, , after applying a linear fade-in can be modeled as follows:
where:
Similarly, the level after applying a linear fade-out can be modeled as follows:
The level after applying an S-curve fade-in can be modeled as follows:
Similarly, the level after applying an S-curve fade-out can be modeled as follows:
Appropriate fade-in time for a gentle linear fade can be around 500 ms; for the fade-out 500 ms would also be effective. To clear up plosive sounds created through vocals, a quick fade-in with very short time of around 10 ms can be used.
The technique of crossfading is also used in audio engineering as a mixing technique, particularly with instrumental solos. A mix engineer will often record two or more of a vocal or instrumental part and create a final version which is a composite of the best passages of these takes by crossfading between takes.
There are many software applications that implement crossfades, for instance, burning-software for the recording of audio-CDs and most DAWs have this function and is available on samplers.Pressing, J. 1992. Synthesizer Performance and Real-Time Techniques. United States of America: Oxford University Press. pp. 61, 69, 246-249, 386. The purpose of a cross-fade is to create a smooth changeover between two pieces of audio.
Velocity crossfading can be incorporated through a MIDI transformation device and where more than one note can be assigned to a given pad (note) on the MIDI keyboard; velocity crossfading may be available. These types of crossfades (those that are based on note velocity) allow two (even more) samples to be assigned to one note or range of notes.Rumsey, F. 1994. MIDI Systems & Control. Oxford: Focal Press. This requires both a loud and soft sample; the reason for this is Timbre change. This type of crossfade is quite subtle depending on the proportion of the received note velocity value of the loud and soft sample.
Crossfading usually involves the sounding of a combination of one or two sounds at the same time. Crossfades can either be applied to a piece of music in real time, or can be pre-calculated.Rumsey, F. & McCormick, T. 1992. Sound and Recording. Burlington: Focal Press. pp. 241, 282-284. While crossfading one does not want the second part of the fade to start playing before the first part is finished; one wants the overlapping parts to be as short as possible. If edit regions are not trimmed to a zero-crossing point one will get unwelcome pops in the middle. A sound at the lowest velocity can fade into a sound of a higher velocity, in the order of: first the first sound then the second. All possible without fading out the sounds that are already present. This in turn is a form of layering that can be used in the mix. The same effect (as was created with velocity) can be applied to a controller. This allows continued monitored control; the crossfading function can also be controlled on some instruments by the keyboard position. These sounds on the MIDI keyboard can be programmed.
A crossfade can either be used between two unrelated pieces of music or between two sounds that are similar; in both of these cases, one would like the sound to be one continuous sound without any bumps. When applying a crossfade between two very different pieces of music (relating to both tone and pitch), one could simply use a crossfade between the two pieces, make a few minor adjustments. This is because the two sounds are different from one another. In the case of a crossfade between two sounds, that are similar, phase-cancellation can become an issue. The two sounds that are crossfaded should be brought into comparison with one another. If both sounds are moving upward they will have a cumulative effect - when added together, this is what one wants. What is not desirable is when both sounds are moving in a different direction, since this can lead to cancelations. This leads to no sound on areas where the amplitudes cancel out one another; there will thus be silence in the middle of the crossfade. This occurrence is rare though since the parameters have to be the same. Commonly a crossfade will result in a gradual reduction in the amount of the sample whose pitch is lower, and an increase will be found on the pitch that is higher. The longer a crossfade, the more likely a problem will occur. One also does not want the effect of the crossfade to be very prominent in the middle of the notes, since if different notes are between the edit point there will be a time when both of the sounds can be heard simultaneously. This overlapping is not expected from a normal singing voice, no reference to Overtone singing.
While DJ pioneers such as Francis Grasso had used basic faders to transition between two records as far back as the late 1960s, they typically had separate faders for each channel. Grandmaster Flash is often credited with the invention of the first crossfader by sourcing parts from a junkyard in the Bronx. It was initially an on/off toggle switch from an old microphone that he transformed into a left/right switch which allowed him to switch from one turntable to another, thereby avoiding a break in the music. However the earliest commercial documented example was designed by Richard Wadman, one of the founders of the British company Citronic. It was called the model SMP101, made about 1977, and had a crossfader that doubled as a L/R balance control or a crossfade between two inputs.
Equal power shapes typically have the sum of their curves (in the middle of the mix range) exceeding the nominal maximum amplitude (1.0), which may produce clipping in some contexts. If that is a concern, then "equal gain" (or "constant gain") shapes should be used (which may be linear or curved) that are designed so the two curves always sum to 1.
In the digital signal processing realm, the term "power curve" is often used to designate crossfade shapes, particularly for equal power shapes.
A knob which rotates is usually not considered a fader, although it is electrically and functionally equivalent. Some small mixers use knobs rather than faders, as do a small number of designed for club DJs who are creating seamless mixes of songs. A fader can be either analog signal, directly controlling the resistance or impedance to the source (e.g. a potentiometer); or Digital data, numerically controlling a digital signal processor (DSP). Analogue faders are found on mixing consoles. A fader can also be used as a control for a voltage controlled amplifier, which has the same effect on the sound as any other fader, but the audio signal does not pass through the fader itself.
The console's computer will update the console's controls on playback. This will be done from memory at the same speed. The advantage of working with mix automation is that only one engineer can perform the job with minimal effort; it can be set up or recorded beforehand to make it even simpler. An example of this is when Ken Hamman installed linear faders that made it possible for him to alter several channels with one hand while mixing, thus he assumed an interactive role in the process of recording.Braun, H. J. Music and Technology in the Twentieth Century. London: The Johns Hopkins University Press. This type of fader level adjustment is also called ‘riding’ the fader.
On an analogue mixing console, the PFL (pre-fader listen) switch routes the incoming signal of a channel to a PFL bus. This bus is sent to the monitor mix and/or the headphones mix, allowing to monitor an incoming signal before it is send to the main output. When the mixer is equipped with VU meter, the PFL allows to visually monitor an audio source without hearing it and adjust its input gain.
This pre-fade listen is valuable since it allows one to listen through headphones in order to hear what the pre-faded part sounds like, while the studio loudspeaker is being used to monitor the rest of the program.
Pre-fade listen can also be used for talkback as well as to listen to channels before they have been faded. After-fade listen only gets its information later. The choice of listen or level will depend on the user's interest: either with the quality and/or content of the signal or with the signal's level. PFL takes place just before the fader and has a joint channel and monitoring function. PFL sends the channel's signal path to the pre-fade bus. The bus is picked up in the monitor module and made accessible as a substitute signal that is sent to the mixer output. Automatic PFL has been made available, almost universally, and no longer needs to be selected beforehand.
Pre-fade listen can also be incorporated in radio stations and serves as a vital tool. This function allows the radio presenter to listen to the source before it is faded on air; allowing the presenter to check the source's incoming level and make sure it is accurate. It is also valuable since live radio broadcasts can fall apart without it as they will not be able to monitor the sound. After-fader listen is not as useful in live programs.
Contemporary
Fade
Shapes
Linear
Logarithmic
Exponential
S-curve
Adjustments
Crossfading
Crossfade shapes
/ref>
Fader
Digital
Types
Pre-fader, post-fader
Pre-fader listen (PFL), after-fader listen (AFL)
See also
|
|