A craniate is a member of the Craniata (sometimes called the Craniota), a proposed clade of chordate with a skull of hard bone or cartilage. Living representatives are the Myxini (hagfishes), Hyperoartia (including ), and the much more numerous Gnathostomata (jawed vertebrates).Campbell & Reece 2005 p. 676Cracraft & Donoghue 2004 p. 390 Formerly distinct from , which excluded hagfish, however molecular and anatomical research in the 21st century has led to the reinclusion of hagfish as vertebrates, making living craniates synonymous with living vertebrates.
The clade was conceived largely on the basis of the Hyperoartia (lampreys and kin) being more closely related to the Gnathostomata (jawed vertebrates) than the Myxini (hagfishes). This, combined with an apparent lack of vertebral elements within the Myxini, suggested that the Myxini were descended from a more ancient lineage than the vertebrates, and that the skull developed before the vertebral column. The clade was thus composed of the Myxini and the , and any extinct chordates with skulls.
However recent studies using molecular phylogenetics have contradicted this view, with evidence that the Cyclostomata (Hyperoartia and Myxini) is Monophyly; this result suggests that the Myxini are degenerate vertebrates, and therefore that vertebrates and craniates are cladistically equivalent, at least for the living representatives. The placement of the Myxini within the vertebrates has been further strengthened by recent anatomical analysis, with vestiges of a vertebral column being discovered in the Myxini.
In addition to distinct crania (sing. cranium), craniates possess many derived characteristics, which have allowed for more complexity to follow. Molecular-genetic analysis of craniates reveals that, compared to less complex animals, they developed duplicate sets of many gene families that are involved in cell signaling, transcription, and morphogenesis (see homeobox).
In general, craniates are much more active than tunicates and lancelets and, as a result, have greater metabolic demands, as well as several anatomical adaptations. Aquatic craniates have gill slits, which are connected to muscles to pump water through the slits, engaging in both feeding and gas exchange (as opposed to lancelets, whose are used only for suspension feeding, chiefly by cilia-mucus rather than muscles). Muscles line the alimentary canal, Peristalsis food through the canal, allowing higher craniates such as mammals to develop more complex digestive systems for optimal food processing. Craniates have cardiovascular systems that include a heart with at least two chambers, red blood cells, oxygen transporting hemoglobin as well as myoglobin, and .
Dumeril (1806) grouped hagfishes and lampreys in the taxon Cyclostomi, characterized by horny teeth borne on a tongue-like apparatus, a large notochord as adults, and pouch-shaped gills (Marspibranchii). Cyclostomata were regarded as either degenerate cartilaginous fishes or primitive vertebrates. Cope (1889) coined the name Agnatha ("jawless") for a group that included the cyclostomes and a number of fossil groups in which jaws could not be observed. Vertebrates were subsequently divided into two major sister-groups: the Agnatha and the Gnathostomata (jawed vertebrates). Stensiö (1927) suggested that the two groups of living agnathans (i.e. the cyclostomes) arose independently from different groups of fossil agnathans.
Løvtrup (1977) argued that lampreys are more closely related to gnathostomes based on a number of uniquely derived characters, including:
In other words, the cyclostome characteristics (e.g. horny teeth on a "tongue", gill pouches) are either instances of convergent evolution for feeding and gill ventilation in animals with an eel-like body shape, or represent primitive craniate characteristics subsequently lost or modified in gnathostomes. On this basis Philippe Janvier (1978) proposed to use the names Vertebrata and Craniata as two distinct and nested taxa.
The new evidence removes support for the hypothesis for the evolutionary sequence by which (from among tunicate-like chordates) first the hard cranium arose as it is exhibited by the hagfishes, then the backbone as exhibited by the lampreys, and then finally the hinged jaw that is now ubiquitous. In 2010, Philippe Janvier stated:
|
|