stem cross-section:
]]
The ground tissue of plants includes all tissues that are neither dermal nor Vascular tissue. It can be divided into three types based on the nature of the cell walls. This tissue system is present between the dermal tissue and forms the main bulk of the plant body.
Parenchyma cells have a variety of functions:
The shape of parenchyma cells varies with their function. In the spongy mesophyll of a leaf, parenchyma cells range from near-spherical and loosely arranged with large intercellular spaces, to branched or Stellate cell, mutually interconnected with their neighbours at the ends of their arms to form a three-dimensional network, like in the red kidney bean Phaseolus vulgaris and other .Jeffree CE, Read N, Smith JAC and Dale JE (1987). Water droplets and ice deposits in leaf intercellular spaces: redistribution of water during cryofixation for scanning electron microscopy. Planta 172, 20-37 These cells, along with the epidermal of the stoma, form a system of air spaces and chambers that regulate the exchange of gases. In some works, the cells of the leaf epidermis are regarded as specialised parenchymal cells,Hill, J. Ben; Overholts, Lee O; Popp, Henry W. Grove Jr., Alvin R. Botany. A textbook for colleges. Publisher: MacGraw-Hill 1960 but the modern preference has long been to classify the epidermis as plant dermal tissue, and parenchyma as ground tissue.Evert, Ray F; Eichhorn, Susan E. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. Publisher: Wiley-Liss 2006.
Shapes of parenchyma:
There are four main types of collenchyma:
Collenchyma cells are most often found adjacent to outer growing tissues such as the vascular cambium and are known for increasing structural support and integrity.
The first use of "collenchyma" () was by Link (1837) who used it to describe the sticky substance on Bletia (Orchidaceae) pollen. Complaining about Link's excessive nomenclature, Schleiden (1839) stated mockingly that the term "collenchyma" could have more easily been used to describe elongated sub-epidermal cells with unevenly thickened cell walls.Leroux O. 2012. Collenchyma: a versatile mechanical tissue with dynamic cell walls. Annals of Botany 110 (6): 1083-98.
Unlike the collenchyma, mature sclerenchyma is composed of dead cells with extremely thick cell walls (secondary walls) that make up to 90% of the whole cell volume. The term sclerenchyma is derived from the Greek σκληρός ( sklērós), meaning "hard." It is the hard, thick walls that make sclerenchyma cells important strengthening and supporting elements in plant parts that have ceased elongation. The difference between sclereids is not always clear: transitions do exist, sometimes even within the same plant.
Contrasting are hard fibers that are mostly found in . Typical examples are the fiber of many Poaceae, Agave sisalana (sisal), Yucca or Phormium tenax, Musa textilis and others. Their cell walls contain, besides cellulose, a high proportion of lignin. The load-bearing capacity of Phormium tenax is as high as 20–25 kg/mm², the same as that of good steel wire (25 kg/ mm²), but the fibre tears as soon as too great a strain is placed upon it, while the wire distorts and does not tear before a strain of 80 kg/mm². The thickening of a cell wall has been studied in Linum. Starting at the centre of the fiber, the thickening layers of the secondary wall are deposited one after the other. Growth at both tips of the cell leads to simultaneous elongation. During development the layers of secondary material seem like tubes, of which the outer one is always longer and older than the next. After completion of growth, the missing parts are supplemented, so that the wall is evenly thickened up to the tips of the fibers.
Fibers usually originate from meristematic tissues. Cambium and procambium are their main centers of production. They are usually associated with the xylem and phloem of the vascular bundles. The fibers of the xylem are always lignified, while those of the phloem are cellulosic. Reliable evidence for the fibre cells' evolutionary origin from exists. During evolution the strength of the tracheid cell walls was enhanced, the ability to conduct water was lost and the size of the pits was reduced. Fibers that do not belong to the xylem are bast (outside the ring of cambium) and such fibers that are arranged in characteristic patterns at different sites of the shoot. The term "sclerenchyma" (originally Sclerenchyma) was introduced by Mettenius in 1865.Mettenius, G. 1865. Über die Hymenophyllaceae. Abhandlungen der Mathematisch-Physischen Klasse der Königlich-Sächsischen Gesellschaft der Wissenschaften 11: 403-504, pl. 1-5. link.
They are small bundles of sclerenchyma tissue in that form durable layers, such as the cores of and the gritty texture of ( Pyrus communis). Sclereids are variable in shape. The cells can be isodiametric, prosenchymatic, forked or elaborately branched. They can be grouped into bundles, can form complete tubes located at the periphery or can occur as single cells or small groups of cells within parenchyma tissues. But compared with most fibres, sclereids are relatively short. Characteristic examples are or the stone cells (called stone cells because of their hardness) of pears and ( Cydonia oblonga) and those of the shoot of the Hoya carnosa ( Hoya carnosa). The cell walls fill nearly all the cell's volume. A layering of the walls and the existence of branched pits is clearly visible. Branched pits such as these are called ramiform pits. The shell of many seeds like those of nuts as well as the stones of like cherry and are made up from sclereids.
These structures are used to protect other cells.
|
|