In macromolecular chemistry, a catenane () is a mechanically interlocked molecular architecture consisting of two or more interlocked , i.e. a molecule containing two or more intertwined rings. The interlocked rings cannot be separated without breaking the of the macrocycles. They are conceptually related to other mechanically interlocked molecular architectures, such as , molecular knots or molecular Borromean rings. Recently the terminology "mechanical bond" has been coined that describes the connection between the macrocycles of a catenane. Catenanes have been synthesised in two different ways: statistical synthesis and template-directed synthesis.
The second approach relies on supramolecular preorganization of the macrocyclic precursors utilizing , metal coordination, hydrophobic effect, or Coulomb force. These non-covalent interactions offset some of the entropy cost of association and help position the components to form the desired catenane upon the final ring-closing. This "template-directed" approach, together with the use of high-pressure conditions, can provide yields of over 90%, thus improving the potential of catenanes for applications. An example of this approach used bis-bipyridinium salts which form strong complexes threaded through crown ether bis( para-phenylene)-34-crown-10.
Template directed syntheses are mostly performed under kinetic control, when the macrocyclization (catenation) reaction is irreversible. More recently, the groups of Jeremy Sanders and Sijbren Otto have shown that dynamic combinatorial approaches using reversible chemistry can be particularly successful in preparing new catenanes of unpredictable structure. The thermodynamically controlled synthesis provides an error correction mechanism; even if a macrocycle closes without forming a catenane it can re-open and yield the desired interlocked structure later. The approach also provides information on the affinity constants between different macrocycles thanks to the equilibrium between the individual components and the catenanes, allowing a titration-like experiment.
If there are more than one recognition sites, it is possible to observe distinct colors depending on the recognition site the ring occupies and thus it is possible to change the color of the catenane solution by changing the preferred recognition site. Switching between the two sites may be achieved by the use of chemical, electrochemical or even visible light based methods.
Catenanes have been synthesized with many functional units, including redox-active groups (e.g. viologen, TTF=tetrathiafulvalene), photoisomerizable groups (e.g. azobenzene), fluorescent groups and chiral groups. Some such units have been used to create molecular switches as described above, as well as for the fabrication of molecular electronic devices and .
Another family of catenanes are called pretzelanes or bridged 2catenanes after their likeness to with a spacer linking the two macrocycles. In one such system one macrocycle is an electron deficient oligo Bis-bipyridinium ring and the other cycle is crown ether cyclophane based on para phenylene or naphthalene. X-ray diffraction shows that due to pi-pi interactions the aromatic group of the cyclophane is held firmly inside the pyridinium ring. A limited number of (rapidly interchanging) conformers exist for this type of compound.
In handcuff-shaped catenanes, two connected rings are threaded through the same ring. The bis-macrocycle (red) contains two phenanthroline units in a crown ether chain. The interlocking ring is self-assembled when two more phenanthroline units with alkene arms coordinate through a copper(I) complex followed by a metathesis ring closing step.
+ Families of catenanes | ||
|
|