In organic chemistry, a carbonate ester ( organic carbonate or organocarbonate) is an ester of carbonic acid. This functional group consists of a carbonyl group flanked by two alkoxy groups. The general structure of these carbonates is and they are related to (), () and also to the inorganic .
of polycarbonate (e.g. Makrolon or Lexan) are linked by carbonate groups. These polycarbonates are used in eyeglass lenses, compact discs, and bulletproof glass. Small carbonate esters like dimethyl carbonate, ethylene carbonate, propylene carbonate are used as solvents, dimethyl carbonate is also a mild methylating agent.
Carbonate esters can be divided into three structural classes: acyclic, cyclic, and polymeric. The first and general case is the acyclic carbonate group. Organic substituents can be identical or not. Both aliphatic or aromatic substituents are known, they are called dialkyl or diaryl carbonates, respectively. The simplest members of these classes are dimethyl carbonate and diphenyl carbonate.
Alternatively, the carbonate groups can be linked by a 2- or 3-carbon bridge, forming cyclic compounds such as ethylene carbonate and trimethylene carbonate. The bridging compound can also have substituents, e.g. CH3 for propylene carbonate. Instead of terminal alkyl or aryl groups, two carbonate groups can be linked by an aliphatic or aromatic bifunctional group.
A third family of carbonates are the polymers, such as poly(propylene carbonate) and poly(bisphenol A carbonate) (e.g. Makrolon or Lexan).
In principle carbonate esters can be prepared by direct condensation of methanol and carbon dioxide. The reaction is however thermodynamically unfavorable. A selective membrane can be used to separate the water from the reaction mixture and increase the yield.
Phenols react similarly. Polycarbonate derived from bisphenol A is produced in this manner. This process is high yielding. However, toxic phosgene is used, and stoichiometric quantities of base (e.g. pyridine) are required to neutralize the hydrogen chloride that is cogenerated. Chloroformate esters are intermediates in this process. Rather than reacting with additional alcohol, they may disproportionate to give the desired carbonate diesters and one equivalent of phosgene:
Overall reaction is:
They are also used as solvents in organic synthesis. Classified as polar solvents, they have a wide liquid temperature range. One example is propylene carbonate with melting point −55 °C and boiling point 240 °C. Other advantages are low ecotoxicity and good biodegradability. Many industrial production pathways for carbonates are not green because they rely on phosgene or propylene oxide.
Dimethyl dicarbonate is commonly used as a drink preservative, processing aid, or sterilant.
Oxidative carbonylation
Diphenyl carbonate is also prepared similarly, but using palladium catalysts. The Pd-catalyzed process requires a cocatalyst to reconvert the Pd(0) to Pd(II). Manganese(III) acetylacetonate has been used commercially.
Reaction of carbon dioxide with epoxides
Carbonate transesterification
Reactions
Uses
|
|