Turtles are reptiles of the order Testudines, characterized by a special turtle shell developed mainly from their ribs. Modern turtles are divided into two major groups, the Pleurodira (side necked turtles) and Cryptodira (hidden necked turtles), which differ in the way the head retracts. There are 360 living and recently extinct species of turtles, including land-dwelling and freshwater . They are found on most continents, some islands and, in the case of , much of the ocean. Like other Amniote (reptiles, , and ) they breathe air and do not lay eggs underwater, although many species live in or around water.
Turtle shells are made mostly of bone; the upper part is the domed carapace, while the underside is the flatter plastron or belly-plate. Its outer surface is covered in scales made of keratin, the material of hair, horns, and claws. The carapace bones develop from ribs that grow sideways and develop into broad flat plates that join up to cover the body. Turtles are or "cold-blooded", meaning that their internal temperature varies with their direct environment. They are generally opportunistic and mainly feed on plants and animals with limited movements. Many turtles animal migration short distances seasonally. Sea turtles are the only reptiles that migrate long distances to lay their eggs on a favored beach.
Turtles have appeared in myths and folktales around the world. Some terrestrial and freshwater species are widely kept as pets. Turtles have been hunted for their meat, for use in traditional medicine, and for their shells. Sea turtles are often killed accidentally as bycatch in fishing nets. Turtle habitats around the world are being destroyed. As a result of these pressures, many species are extinct or threatened with extinction.
The name of the order, Testudines ( ), is based on the Latin word testudo 'tortoise'; and was coined by German naturalist August Batsch in 1788. The order has also been historically known as Chelonii (Latreille 1800) and Chelonia (Ross and Macartney 1802), which are based on the Ancient Greek word χελώνη () 'tortoise'. Testudines is the official order name due to the principle of priority. The term chelonian is used as a formal name for members of the group.
The carapace is fused with the vertebrae and ribs while the plastron is formed from bones of the shoulder girdle, sternum, and gastralia (abdominal ribs). During development, the ribs grow sideways into a carapacial ridge, unique to turtles, entering the dermis (inner skin) of the back to support the carapace. The development is signaled locally by proteins known as fibroblast growth factors that include FGF10. The shoulder girdle in turtles is made up of two bones, the scapula and the coracoid. Both the shoulder and pelvic girdles of turtles are located within the shell and hence are effectively within the rib cage. The trunk ribs grow over the shoulder girdle during development.
The shell is covered in epidermal (outer skin) scales known as that are made of keratin, the same substance that makes up hair and fingernails. Typically, a turtle has 38 scutes on the carapace and 16 on the plastron, giving them 54 in total. Carapace scutes are divided into "marginals" around the margin and "vertebrals" over the vertebral column, though the scute that overlays the neck is called the "cervical". "Pleurals" are present between the marginals and vertebrals. Plastron scutes include gulars (throat), humerals, pectorals, abdominals, and anals. Pleurodira additionally have "intergular" scutes between the gulars. Turtle scutes are usually structured like mosaic tiles, but some species, like the hawksbill sea turtle, have overlapping scutes on the carapace.
The shapes of turtle shells vary with the adaptations of the individual species, and sometimes with sex. Land-dwelling turtles are more dome-shaped, which appears to make them more resistant to being crushed by large animals. Aquatic turtles have flatter, smoother shells that allow them to cut through the water. Sea turtles in particular have streamlined shells that reduce drag and increase stability in the open ocean. Some turtle species have pointy or spiked shells that provide extra protection from predators and camouflage against the leafy ground. The lumps of a tortoise shell can tilt its body when it gets flipped over, allowing it to flip back. In male tortoises, the tip of the plastron is thickened and used for butting and ramming during combat.
Shells vary in flexibility. Some species, such as , lack the lateral extensions and instead have the carapace bones fully fused or ankylosis together. Several species have hinges on their shells, usually on the plastron, which allow them to expand and contract. have rubbery edges, due to the loss of bones. The leatherback turtle has hardly any bones in its shell, but has thick connective tissue and an outer layer of leathery skin.
Turtles that are carnivorous or durophagy (eating hard-shelled animals) have the most powerful bites. For example, the durophagous Mesoclemmys nasuta has a bite force of . Species that are insectivorous, piscivorous (fish-eating), or omnivorous have lower bite forces. Living turtles lack teeth but have beaks made of rhamphotheca along the edges of the jaws. These sheaths may have sharp edges for cutting meat, serrations for clipping plants, or broad plates for breaking mollusks. Sea turtles, and several extinct forms, have evolved a bony secondary palate which completely separates the oral and nasal cavities.
The necks of turtles are highly flexible, possibly to compensate for their rigid shells. Some species, like sea turtles, have short necks while others, such as snake-necked turtles, have long ones. Despite this, all turtle species have eight neck vertebrae, a consistency not found in other reptiles but similar to mammals. Some snake-necked turtles have both long necks and large heads, limiting their ability to lift them when not in water. Some turtles have folded structures in the larynx or glottis that vibrate to produce sound. Other species have elastin-rich .
Sea turtles and the pig-nosed turtle are the most specialized for swimming. Their front limbs have evolved into flippers while the shorter hind limbs are shaped more like rudders. The front limbs provide most of the thrust for swimming, while the hind limbs serve as stabilizers. Sea turtles such as the green sea turtle rotate the front limb flippers like a bird's wings to generate a propulsive force on both the upstroke and on the downstroke. This is in contrast to similar-sized freshwater turtles (measurements having been made on young animals in each case) such as the Caspian turtle, which uses the front limbs like the oars of a rowing boat, creating substantial negative thrust on the recovery stroke in each cycle. In addition, the streamlining of the marine turtles reduces drag. As a result, marine turtles produce a propulsive force twice as large, and swim six times as fast, as freshwater turtles. The swimming efficiency of young marine turtles is similar to that of fast-swimming fish of open water, like mackerel.
Compared to other reptiles, turtles tend to have reduced tails, but these vary in both length and thickness among species and between sexes. Snapping turtles and the big-headed turtle have longer tails; the latter uses it for balance while climbing. The cloaca is found underneath and at the base, and the tail itself houses the reproductive organs. Hence, males have longer tails to contain the penis. In sea turtles, the tail is longer and more prehensile in males, who use it to grasp mates. Several turtle species have spines on their tails.
Sea turtles orient themselves on land by night, using visual features detected in dim light. They can use their eyes in clear surface water, muddy coasts, the darkness of the deep ocean, and also above water. Unlike in terrestrial turtles, the cornea (the curved surface that lets light into the eye) does not help to focus light on the retina, so focusing underwater is handled entirely by the lens, behind the cornea. The cone cells contain oil droplets placed to shift perception toward the red part of the spectrum, improving color discrimination. Visual acuity, studied in hatchlings, is highest in a horizontal band with retinal cells packed about twice as densely as elsewhere. This gives the best vision along the visual horizon. Sea turtles do not appear to use polarized light for orientation as many other animals do. The deep-diving leatherback turtle lacks specific adaptations to low light, such as large eyes, large lenses, or a reflective Tapetum lucidum. It may rely on seeing the bioluminescence of prey when hunting in deep water.
Turtles have no ear openings; the eardrum is covered with scales and encircled by a bony otic capsule, which is absent in other reptiles. Their hearing thresholds are high in comparison to other reptiles, reaching up to 500 Hz in air, but underwater they are more attuned to lower frequencies. The loggerhead sea turtle has been shown experimentally to respond to low sounds, with maximal sensitivity between 100 and 400 Hz.
Turtles have Olfactory system (smell) and vomeronasal receptors along the nasal cavity, the latter of which are used to detect chemical signals. Experiments on green sea turtles showed they could learn to respond to a selection of different odorant chemicals such as triethylamine and cinnamaldehyde, which were detected by olfaction in the nose. Such signals could be used in navigation.
The lungs are ventilated using specific groups of abdominal muscles attached to the organs that pull and push on them. Specifically, it is the turtle's large liver that compresses the lungs. Underneath the lungs, in the coelomic cavity, the liver is connected to the right lung by the root, and the stomach is directly attached to the left lung, and to the liver by a mesentery. When the liver is pulled down, inhalation begins. Supporting the lungs is a wall or septum, which is thought to prevent them from collapsing. During exhalation, the contraction of the transversus abdominis muscle propels the organs into the lungs and expels air. Conversely, during inhalation, the relaxing and flattening of the oblique abdominis muscle pulls the transversus back down, allowing air back into the lungs.
Although many turtles spend large amounts of their lives underwater, all turtles breathe air and must surface at regular intervals to refill their lungs. Depending on the species, immersion periods vary between a minute and an hour. Some species can respire through the cloaca, which contains large sacs that are lined with many finger-like projections that take up dissolved oxygen from the water.
The heart has two atria but only one ventricle. The ventricle is subdivided into three chambers. A muscular ridge enables a complex pattern of blood flow so that the blood can be directed either to the lungs via the pulmonary artery, or to the body via the aorta. The ability to separate the two outflows varies between species. The leatherback has a powerful muscular ridge enabling almost complete separation of the outflows, supporting its actively swimming lifestyle. The ridge is less well developed in freshwater turtles like the sliders ( Trachemys).
Turtles are capable of enduring periods of anaerobic respiration longer than many other vertebrates. This process breaks down sugars incompletely to lactic acid, rather than all the way to carbon dioxide and water as in aerobic (oxygen-based) respiration. They make use of the shell as a source of additional buffering agents for combating increased acidity, and as a sink for lactic acid.
Adult sea turtles, too, have large enough bodies that they can to some extent control their temperature. The largest turtle, the leatherback, can swim in the waters off Nova Scotia, which may be as cold as , while their body temperature has been measured at up to warmer than the surrounding water. To help keep their temperature up, they have a system of countercurrent heat exchange in the blood vessels between their body core and the skin of their flippers. The vessels supplying the head are insulated by fat around the neck.
Turtles generally eat their food in a straightforward way, though some species have special feeding techniques. The yellow-spotted river turtle and the painted turtle may filter feed by skimming the water surface with their mouth and throat open to collect particles of food. When the mouth closes, the throat constricts and water is pushed out through the nostrils and the gap in between the jaws. Some species employ a "gape-and-suck method" where the turtle opens its jaws and expands its throat widely, sucking the prey in.
The diet of an individual within a species may change with age, sex, and season, and may also differ between populations. In many species, juveniles are generally carnivorous but become more herbivorous as adults. With Barbour's map turtle, the larger female mainly eats mollusks while the male usually eats . Blanding's turtle may feed mainly on snails or crayfish depending on the population. The European pond turtle has been recorded as being mostly carnivorous much of the year but switching to Nymphaea alba during the summer. Some species have developed specialized diets such as the hawksbill, which eats sponges, the leatherback, which feeds on jellyfish, and the Mekong snail-eating turtle.
Play behavior has been documented in some turtle species. In the laboratory, Florida red-bellied cooters can learn novel tasks and have demonstrated a long-term memory of at least 7.5 months. Similarly, giant tortoises can learn and remember tasks, and master lessons much faster when trained in groups. Tortoises appear to be able to retain operant conditioning nine years after their initial training. Studies have shown that turtles can navigate the environment using landmarks and a map-like system resulting in accurate direct routes towards a goal. Navigation in turtles have been correlated to high cognition function in the medial cortex region of the brain.
How sea turtles navigate to their breeding beaches remains unknown. One possibility is imprinting as in salmon, where the young learn the chemical signature, effectively the scent, of their home waters before leaving, and remember that when the time comes for them to return as adults. Another possible cue is the orientation of the Earth's magnetic field at the natal beach. There is experimental evidence that turtles have an effective magnetic sense, and that they use this in navigation. Proof that homing occurs is derived from genetic analysis of populations of loggerheads, hawksbills, leatherbacks, and olive ridleys by nesting place. For each of these species, the populations in different places have their own mitochondrial DNA genetic signatures that persist over the years. This shows that the populations are distinct and that homing must be occurring reliably.
Female choice is important in some species, and female green sea turtles are not always receptive. As such, they have evolved behaviors to avoid the male's attempts at copulation, such as swimming away, confronting the male followed by biting or taking up a refusal position with her body vertical, her limbs widely outspread, and her plastron facing the male. If the water is too shallow for the refusal position, the females resort to beaching themselves, as the males do not follow them ashore.
All turtles fertilize internally; mounting and copulation can be difficult. In many species, males have a concave plastron that interlocks with the female's carapace. In species like the Russian tortoise, the male has a lighter shell and longer legs. The high, rounded shape of box turtles are particular obstacles for mounting. The male eastern box turtle leans backward and hooks onto the back of the female's plastron. Aquatic turtles mount in water, and female sea turtles support the mounting male while swimming and diving.
Hatching young turtles break out of the shell using an egg tooth, a sharp projection that exists temporarily on their upper beak. Hatchlings dig themselves out of the nest and find safety in vegetation or water. Some species stay in the nest for longer, be it for overwintering or to wait for the rain to loosen the soil for them to dig out. Young turtles are highly vulnerable to predators, both in the egg and as hatchlings. Mortality is high during this period but significantly decreases when they reach adulthood. Most species grow quickly during their early years and slow down when they mature.
More recent discoveries have painted a different scenario for the evolution of the turtle's shell. The stem-turtles Eunotosaurus of the Middle Permian, Pappochelys of the Middle Triassic, and Eorhynchochelys of the Late Triassic lacked carapaces and plastrons but had shortened torsos, expanded ribs, and lengthened dorsal vertebrae. Also in the Late Triassic, Odontochelys had a partial shell consisting of a complete bony plastron and an incomplete carapace. The development of a shell reached completion with the Late Triassic Proganochelys, with its fully developed carapace and plastron. Adaptations that led to the evolution of the shell may have originally been for digging and a fossorial lifestyle.
The oldest known members of the Pleurodira lineage are the Platychelyidae, from the Late Jurassic. The oldest known unambiguous cryptodire is Sinaspideretes, a close relative of softshell turtles, from the Late Jurassic of China. Turtles became highly diverse during the Cretaceous, as climatic conditions in this period were favourable for their global dispersal. During the Late Cretaceous and Cenozoic, members of the pleurodire families Bothremydidae and Podocnemididae became widely distributed in the Northern Hemisphere due to their coastal habits. The oldest known soft-shelled turtles and sea turtles appeared during the Early Cretaceous. Tortoises originated in Asia during the Eocene. A late surviving group of stem-turtles, the Meiolaniidae, survived in Australasia into the Pleistocene and Holocene.
Some early morphological phylogenetics studies have placed turtles closer to Lepidosauria (, , and ) than to ( and birds). By contrast, several molecular studies place turtles either within Archosauria, or, more commonly, as a sister group to extant archosaurs, though an analysis conducted by Tyler Lyson and colleagues (2012) recovered turtles as the sister group of lepidosaurs instead. Ylenia Chiari and colleagues (2012) analyzed 248 from 16 vertebrates and suggested that turtles share a more recent common ancestor with birds and crocodilians. The date of separation of turtles and birds and crocodilians was estimated to be during the Permian. Through genomic-scale phylogenetic study of ultra-conserved elements (UCEs) to clarify the placement of turtles within reptiles, Nicholas Crawford and colleagues (2012) similarly found that turtles are closer to birds and crocodilians.
Using the draft (unfinished) genome sequences of the green sea turtle and the Chinese softshell turtle, Zhuo Wang and colleagues (2013) concluded that turtles are likely a sister group of crocodilians and birds. The external phylogeny of the turtles is shown in the cladogram below.
The cladogram, from Nicholas Crawford and colleagues 2015, shows the internal phylogeny of the Testudines down to the level of families. The analysis by Thompson and colleagues in 2021 supports the same structure down to the family level.
The adductor muscles in the lower jaw create a pulley-like system in both subgroups. However, the bones that the muscles articulate with differ. In Pleurodira, the pulley is formed with the of the palate, but in Cryptodira the pulley is formed with the otic capsule. Both systems help to vertically redirect the adductor muscles and maintain a powerful bite.
A further difference between the suborders is the attachment of the pelvis. In Cryptodira, the pelvis is free, linked to the shell only by ligaments. In Pleurodira, the pelvis is sutured, joined with bony connections, to the carapace and to the plastron, creating a pair of large columns of bone at the back end of the turtle, linking the two parts of the shell.
For turtles in colder climates, their distribution is limited by constraints on reproduction, which is reduced by long hibernations. North American species barely range above the southern Canadian border. Some turtles are found at high altitudes, for example, the species Terrapene ornata occurs up to in New Mexico. Conversely, the leatherback sea turtle can dive over . Species of the genus Gopherus can tolerate both below freezing and over in body temperature, though they are most active at .
Turtle hatchery can be set up when protection against flooding, erosion, predation, or heavy poaching is required. Chinese markets have sought to satisfy an increasing demand for turtle meat with farmed turtles. In 2007 it was estimated that over a thousand turtle farms operated in China. All the same, wild turtles continue to be caught and sent to market in large numbers, resulting in what conservationists have called "the Asian turtle crisis". In the words of the biologist George Amato, the hunting of turtles "vacuumed up entire species from areas in Southeast Asia", even as biologists still did not know how many species lived in the region. In 2000, all the Asian box turtles were placed on the CITES list of endangered species.
Harvesting wild turtles is legal in some American states, and there has been a growing demand for American turtles in China. The Florida Fish and Wildlife Conservation Commission estimated in 2008 that around 3,000 pounds of softshell turtles were exported weekly via Tampa International Airport. However, the great majority of turtles exported from the US between 2002 and 2005 were farmed.
Large numbers of sea turtles are accidentally killed in Longline fishing, gillnetting, and trawling nets as bycatch. A 2010 study suggested that over 8 million had been killed between 1990 and 2008; the Eastern Pacific and the Mediterranean were identified as among the areas worst affected. Since the 1980s, the United States has required all Shrimp trawling to fit their nets with turtle excluder devices that prevent turtles from being entangled in the net and drowning.
More locally, other human activities are affecting marine turtles. In Australia, Queensland's shark culling program, which uses shark nets and drum lines, has killed over 5,000 turtles as bycatch between 1962 and 2015; including 719 loggerhead turtles and 33 hawksbill sea turtles, which are listed as critically endangered.
Native turtle populations can also be threatened by Invasive species. The central North American red-eared slider turtle has been listed among the "world's worst invasive species", pet turtle having been released globally. They appear to compete with native turtle species in eastern and western North America, Europe, and Japan.
Turtles have featured in human cultures across the world since ancient times. They are generally viewed positively despite not being "cuddly" or flashy; their association with the ancient times and old age have contributed to their endearing image.
In Hindu mythology, the World Turtle, named Kurma, supports four elephants on his back; they, in turn, carry the weight of the whole world on their backs. The turtle is one of the ten or incarnations of the god Vishnu. The yoga pose Kurmasana is named for the avatar. revised from American Academy of Religions conference, San Francisco, 19 November 2011. World Turtles are found in Native American cultures including the Algonquian, Iroquois, and Lenape. They tell many versions of the creation story of Turtle Island. One version has Muskrat pile up earth on Turtle's back, creating the continent of North America. An Iroquois version has the pregnant Sky Woman fall through a hole in the sky between a tree's roots, where she is caught by birds who land her safely on Turtle's back; the Earth grows around her. The turtle here is altruistic, but the world is a heavy burden, and the turtle sometimes shakes itself to relieve the load, causing earthquakes.
A turtle was the symbol of the Ancient Mesopotamian god Enki from the 3rd millennium BCE onward. An ancient Greek origin myth told that only the tortoise refused the invitation of the gods Zeus and Hera to their wedding, as it preferred to stay at home. Zeus then ordered it to carry its house with it, ever after. Another of their gods, Hermes, invented a seven-stringed chelys made with the shell of a tortoise. In the Shang dynasty China practice of plastromancy, dating back to 1200 BCE, oracles were obtained by inscribing questions on turtle plastrons using the oldest known form of Chinese characters, burning the plastron, and interpreting the resulting cracks. Later, the turtle was one of the Four Symbols in Confucianism, while in the Han period, were mounted on top of stone turtles, later linked with Bixi, the turtle-shelled son of the Dragon King. Marine turtles feature significantly in Australian Aboriginal art. The army of Ancient Rome used the testudo ("tortoise") formation where soldiers would form a shield wall for protection.
In Aesop's Fables, "The Tortoise and the Hare" tells how an unequal race may be won by the slower partner. Lewis Carroll's 1865 Alice's Adventures in Wonderland features a Mock Turtle, named for a soup meant to imitate the expensive soup made from real turtle meat. In 1896, the French playwright Léon Gandillot wrote a comedy in three acts named La Tortue that was "a Parisian sensation" in its run in France, and came to the Manhattan Theatre, Broadway, New York, in 1898 as The Turtle. A "cosmic turtle" and the island motif reappear in Gary Snyder's 1974 novel Turtle Island, and again in Terry Pratchett's Discworld series as Great A'Tuin, starting with the 1983 novel The Colour of Magic. It is supposedly of the species Chelys galactica, the galactic turtle, complete with four elephants on its back to support Discworld. A giant fire-breathing turtle called Gamera is the star of a series of Japanese monster movies in the kaiju genre and has had twelve films from 1965 to 2006. Turtles have been featured in comic books and animations such as the 1984 Teenage Mutant Ninja Turtles.
Head and neck
Limbs and locomotion
Senses
Breathing
Circulation
Osmoregulation
Thermoregulation
Behavior
Diet and feeding
Communication and intelligence
Defense
Migration
Reproduction and life cycle
Courtship and mounting
Eggs and hatchlings
Lifespan
Systematics and evolution
Fossil history
External relationships
Internal relationships
Differences between the two suborders
Distribution and habitat
Conservation
Human uses
On space flights
In culture
As pets
As food and other uses
See also
Citations
Cited sources
External links
target="_blank" rel="nofollow"> Symposium on Turtle Evolution
|
|