Brachiopods (), phylum Brachiopoda, are a phylum of animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalve molluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection.
Two major categories are traditionally recognized, articulate and inarticulate brachiopods. The word "articulate" is used to describe the tooth-and-groove structures of the valve-hinge which is present in the articulate group, and absent from the inarticulate group. This is the leading diagnostic skeletal feature, by which the two main groups can be readily distinguished as fossils. Articulate brachiopods have toothed hinges and simple, vertically oriented opening and closing muscles. Conversely, inarticulate brachiopods have weak, untoothed hinges and a more complex system of vertical and oblique (diagonal) muscles used to keep the two valves aligned. In many brachiopods, a stalk-like projects from an opening near the hinge of one of the valves, known as the pedicle or ventral valve. The pedicle, when present, keeps the animal anchored to the seabed but clear of sediment which would obstruct the opening.
Brachiopod lifespans range from three to over thirty years. Ripe (Egg cell or sperm) float from the into the main coelom and then exit into the mantle cavity. The of inarticulate brachiopods are miniature adults, with Lophophore (a feeding organ consisting of an array of tentacles) that enable the larvae to feed and swim for months until the animals become heavy enough to settle to the seabed. The planktonic larvae of articulate species do not resemble the adults, but rather look like blobs with , and remain among the plankton for only a few days before metamorphosis and leaving the water column.
Brachiopods live only in the sea, and most species avoid locations with strong currents or waves. The larvae of articulate species settle in quickly and form dense populations in Endemism while the larvae of inarticulate species swim for up to a month and have wide ranges. Fish and crustaceans seem to find brachiopod flesh distasteful and seldom attack them.
The word "brachiopod" is formed from the Ancient Greek words brachion ("arm") and podos ("foot"). They are often known as " lamp shells", since the curved shells of the class Terebratulida resemble pottery oil-lamps.
Although superficially resembling bivalves, brachiopods are not particularly closely related, and evolved their two valved structure independently, an example of convergent evolution. Brachiopods are part of the broader group Lophophorata, alongside Bryozoa and Phoronid, with which they share the characteristic lophophores.
Brachiopods are thought to have evolved from "tommotiid" ancestors during the Early Cambrian. Brachiopods were highly diverse during the Paleozoic era, when their diversity exceeded that of bivalves. Their diversity was strongly affected by the end-Capitanian and end-Permian mass extinction events, from which their diversity would never recover to its former Paleozoic levels, with bivalves subsequently ascending to dominance in marine ecosystems. Today, there are around 400 living species of brachiopods, in comparison to around 9,200 species of bivalves. Brachiopods now live mainly in cold water and low light.
Among brachiopods, only the lingulids ( Lingula sp.) have been fished commercially, on a very small scale.
The brachial valve is usually smaller and bears brachia ("arms") on its inner surface. These brachia are the origin of the phylum's name, and support the lophophore, used for filter feeder and respiration. The pedicle valve is usually larger, and near the hinge it has an opening for the stalk-like pedicle through which most brachiopods attach themselves to the substrate. (R. C. Moore, 1952) The brachial and pedicle valves are often called the dorsal and ventral valves, respectively, but some paleontologists regard the terms "dorsal" and "ventral" as irrelevant since they believe that the "ventral" valve was formed by a folding of the upper surface under the body. The ventral ("lower") valve actually lies above the dorsal ("upper") valve when most brachiopods are oriented in life position. In many living articulate brachiopod species, both valves are convex, the surfaces often bearing growth lines and/or other ornamentation. However, inarticulate lingulids, which burrow into the seabed, have valves that are smoother, flatter and of similar size and shape. (R. C. Moore, 1952)
Articulate ("jointed") brachiopods have a tooth and socket arrangement by which the pedicle and brachial valves hinge, locking the valves against lateral displacement. Inarticulate brachiopods have no matching teeth and sockets; their valves are held together only by muscles. (R. C. Moore, 1952)
All brachiopods have adductor muscles that are set on the inside of the pedicle valve and which close the valves by pulling on the part of the brachial valve ahead of the hinge. These muscles have both "quick" fibers that close the valves in emergencies and "catch" fibers that are slower but can keep the valves closed for long periods. Articulate brachiopods open the valves by means of abductor muscles, also known as diductors, which lie further to the rear and pull on the part of the brachial valve behind the hinge. Inarticulate brachiopods use a different opening mechanism, in which muscles reduce the length of the coelom (main body cavity) and make it bulge outwards, pushing the valves apart. Both classes open the valves to an angle of about 10 degrees. The more complex set of muscles employed by inarticulate brachiopods can also operate the valves as scissors, a mechanism that lingulids use to burrow.
Each valve consists of three layers, an outer periostracum made of and two biomineralized layers. Articulate brachiopods have an outermost periostracum made of , a "primary layer" of calcite (a form of calcium carbonate) under that, and innermost a mixture of proteins and calcite. Inarticulate brachiopod shells have a similar sequence of layers, but their composition is different from that of articulated brachiopods and also varies among the classes of inarticulate brachiopods. The Terebratulida are an example of brachiopods with a punctate shell structure; the mineralized layers are perforated by tiny open canals of living tissue, extensions of the mantle called caeca, which almost reach the outside of the primary layer. These shells can contain half of the animal's living tissue. Impunctate shells are solid without any tissue inside them. Pseudopunctate shells have tubercles formed from deformations unfurling along calcite rods. They are only known from fossil forms, and were originally mistaken for calcified punctate structures. Marine Species Identification Portal : Brachiopoda of the North Sea
Lingulids and discinids, which have pedicles, have a matrix of glycosaminoglycans (long, unbranched ), in which other materials are embedded: chitin in the periostracum; apatite containing calcium phosphate in the primary biomineralized layer;"Apatite" is strictly defined in terms of its structure rather than chemical composition. Some forms contain calcium phosphate and others have calcium carbonate. See and a complex mixture in the innermost layer, containing collagen and other proteins, chitinophosphate and apatite. Craniidae, which have no pedicle and cement themselves directly to hard surfaces, have a periostracum of chitin and mineralized layers of calcite. Shell growth can be described as holoperipheral, mixoperipheral, or hemiperipheral. In holoperipheral growth, distinctive of craniids, new material is added at an equal rate all around the margin. In mixoperipheral growth, found in many living and extinct articulates, new material is added to the posterior region of the shell with an anterior trend, growing towards the other shell. Hemiperipheral growth, found in lingulids, is similar to mixoperipheral growth but occurs in mostly a flat plate with the shell growing forwards and outwards.
Relatively new cells in a groove on the edges of the mantle secrete material that extends the periostracum. These cells are gradually displaced to the underside of the mantle by more recent cells in the groove, and switch to secreting the mineralized material of the shell valves. In other words, on the edge of the valve the periostracum is extended first, and then reinforced by extension of the mineralized layers under the periostracum. In most species the edge of the mantle also bears movable bristles, often called or setae, that may help defend the animals and may act as . In some brachiopods groups of chaetae help to channel the flow of water into and out of the mantle cavity.
In most brachiopods, diverticulum (hollow extensions) of the mantle penetrate through the mineralized layers of the valves into the periostraca. The function of these diverticula is uncertain and it is suggested that they may be storage chambers for chemicals such as glycogen, may secretion repellents to deter organisms that stick to the shell or may help in Breathing. Experiments show that a brachiopod's oxygen consumption drops if petroleum jelly is smeared on the shell, clogging the diverticula.
The tentacles bear cilia (fine mobile hairs) on their edges and along the center. The beating of the outer cilia drives a water current from the tips of the tentacles to their bases, where it exits. Food particles that collide with the tentacles are trapped by mucus, and the cilia down the middle drive this mixture to the base of the tentacles. A brachial groove runs round the bases of the tentacles, and its own cilia pass food along the groove towards the mouth. The method used by brachiopods is known as "upstream collecting", as food particles are captured as they enter the field of cilia that creates the feeding current. This method is used by the related and , and also by . use a similar-looking crown of tentacles, but it is solid and the flow runs from bases to tips, forming a "downstream collecting" system that catches food particles as they are about to exit.
Pedicles of inarticulate species are extensions of the main coelom, which houses the internal organs. A layer of longitudinal muscles lines the epidermis of the pedicle. Members of the order Lingulida have long pedicles, which they use to burrow into soft substrates, to raise the shell to the opening of the burrow to feed, and to retract the shell when disturbed. A lingulid moves its body up and down the top two-thirds of the burrow, while the remaining third is occupied only by the pedicle, with a bulb on the end that builds a "concrete" anchor. However, the pedicles of the order Discinida are short and attach to hard surfaces.
The pedicle of articulate brachiopods has no coelom, and its homology is unclear. It is constructed from a different part of the body, and has a compact core composed of connective tissue. Muscles at the rear of the body can straighten, bend or even rotate the pedicle. The far end of the pedicle generally has rootlike extensions or short papillae ("bumps"), which attach to hard surfaces. However, articulate brachiopods of the genus Chlidonophora use a branched pedicle to anchor in sediment. The pedicle emerges from the pedicle valve, either through a notch in the hinge or, in species where the pedicle valve is longer than the brachial, from a hole where the pedicle valve doubles back to touch the brachial valve. Some species stand with the front end upwards, while others lie horizontal with the pedicle valve uppermost.
Some early brachiopods—for example Strophomenata, Kutorginata and Obolellata—do not attach using their pedicle, but with an entirely different structure known as the "pedicle sheath", which has no relationship to the pedicle. This structure arises from the umbo of the pedicle valve, at the centre of the earliest (metamorphic) shell at the location of the protegulum. It is sometimes associated with a fringing plate, the colleplax.
Nutrients are transported throughout the coelom, including the mantle lobes, by cilia. The wastes produced by metabolism are broken into ammonia, which is eliminated by diffusion through the mantle and lophophore. Brachiopods have metanephridia, used by many phylum to excrete ammonia and other dissolved wastes. However, brachiopods have no sign of the podocytes, which perform the first phase of excretion in this process, and brachiopod metanephridia appear to be used only to emit sperm and ovum.
The majority of food consumed by brachiopods is digestible, with very little solid waste produced. The cilia of the lophophore can change direction to eject isolated particles of indigestible matter. If the animal encounters larger lumps of undesired matter, the cilia lining the entry channels pause and the tentacles in contact with the lumps move apart to form large gaps and then slowly use their cilia to dump the lumps onto the lining of the mantle. This has its own cilia, which wash the lumps out through the opening between the valves. If the lophophore is clogged, the adductors snap the valves sharply, which creates a "sneeze" that clears the obstructions. In some inarticulate brachiopods the digestive tract is U-shaped and ends with an anus that eliminates solids from the front of the body wall. Other inarticulate brachiopods and all articulate brachiopods have a curved gut that ends blindly, with no anus. These animals bundle solid waste with mucus and periodically "sneeze" it out, using sharp contractions of the gut muscles.
Brachiopods also have colorless blood, circulated by a muscular heart lying in the dorsal part of the body above the stomach. The blood passes through vessels that extend to the front and back of the body, and branch to organs including the lophophore at the front and the gut, muscles, gonads and nephridia at the rear. The blood circulation seems not to be completely closed, and the coelomic fluid and blood must mix to a degree. The main function of the blood may be to deliver nutrients.
The cell division in the embryo is radial (cells form in stacks of rings directly above each other), holoblastic (cells are separate, although adjoining) and regulative (the type of tissue into which a cell develops is controlled by interactions between adjacent cells, rather than rigidly within each cell). While some animals develop the mouth and anus by deepening the blastopore, a "dent" in the surface of the early embryo, the blastopore of brachiopods closes up, and their mouth and anus develop from new openings.
The of lingulids (Lingulida and Discinida) are planktotrophic (feeding), and swim as plankton for months resembling miniature adults, with valves, mantle lobes, a pedicle that coils in the mantle cavity, and a small lophophore, which is used for both feeding and swimming. The larvae of Craniidae have no pedicle or shell. As the shell becomes heavier, the juvenile sinks to the bottom and becomes a sessile adult. The larvae of articulate species (Craniiformea and Rhynchonelliformea) are lecithotrophic (non-feeding) and live only on yolk, and remain among the plankton for only a few days. The Rhynchonelliformea larvae has three larval lobes, unlike the Craniiformea which only have two larval lobes. This type of larva has a frontmost lobe that becomes the body and lophophore, a rear lobe that becomes the pedicle, and a mantle like a skirt, with the hem towards the rear. On Metamorphosis into an adult, the pedicle attaches to a surface, the front lobe develops the lophophore and other organs, and the mantle rolls up over the front lobe and starts to secretion the shell. In cold seas, brachiopod growth is seasonal and the animals often lose weight in winter. These variations in growth often form growth lines in the shells. Members of some genus have survived for a year in aquaria without food.
However, other taxonomists believe that some patterns of characteristics are sufficiently stable to make higher-level classifications worthwhile, although there are different views about what the higher-level classifications should be. The "traditional" classification was defined in 1869; two further approaches were established in the 1990s:
+ Three high-level classifications of brachiopods | |
Short, attached to hard surfaces | |
About 330 living species are recognized, grouped into over 100 genus. The great majority of modern brachiopods are rhynchonelliforms (Articulata).
Brachiopod shells occasionally show evidence of damage by predators, and sometimes of subsequent repair. Fish and crustaceans seem to find brachiopod flesh distasteful. The fossil record shows that drilling predators like attacked and 10 to 20 times more often than they did brachiopods, suggesting that such predators attacked brachiopods by mistake or when other prey was scarce. In waters where food is scarce, the snail Capulus ungaricus steals food from bivalves, snails, tube worms, and brachiopods.
Among brachiopods only the lingulids have been fished commercially, and only on a very small scale. It is mostly the fleshy pedicle that is eaten. The world's oldest food delicacy revealed The Potency and Food Safety of Lamp Shells (Brachiopoda: Lingula sp.) as Food Resources Applied Palaeontology Fishing in Many Waters Brachiopods seldom settle on artificial surfaces, probably because they are vulnerable to pollution. This may make the population of Coptothyrus adamsi useful as a measure of environmental conditions around an oil terminal being built in Russia on the shore of the Sea of Japan.
Brachiopods are the state fossil of the U.S. state of Kentucky.
Since 1991 Claus Nielsen has proposed a hypothesis about the development of brachiopods, adapted in 2003 by Cohen and colleagues as a hypothesis about the earliest evolution of brachiopods. This "brachiopod fold" hypothesis suggests that brachiopods evolved from an ancestor similar to Halkieria, a slug-like animal with "chain mail" on its back and a shell at the front and rear end. The hypothesis proposes that the first brachiopod converted its shells into a pair of valves by folding the rear part of its body under its front.
However, fossils from 2007 onwards have supported a new interpretation of the Early-Cambrian , and a new hypothesis that brachiopods evolved from tommotiids. The "armor mail" of tommotiids was well-known but not in an assembled form, and it was generally assumed that tommotiids were slug-like animals similar to Halkieria, except that tommotiids' armor was made of organophosphatic compounds while that of Halkieria was made of calcite. However, fossils of a new tommotiid, Eccentrotheca, showed an assembled mail coat that formed a tube, which would indicate a sessile animal rather than a creeping slug-like one. Eccentrotheca's organophosphatic tube resembled that of , sessile animals that feed by and are regarded either very close relatives or a sub-group of brachiopods. Paterimitra, another mostly assembled fossil found in 2008 and described in 2009, had two symmetrical plates at the bottom, like brachiopod valves but not fully enclosing the animal's body.
At their peak in the Paleozoic, the brachiopods were among the most abundant filter-feeders and reef-builders, and occupied other , including swimming in the jet-propulsion style of . However, after the Permian–Triassic extinction event, informally known as the "Great Dying", brachiopods recovered only a third of their former diversity. It was often thought that brachiopods were actually declining in diversity, and that in some way bivalves out-competed them. However, in 1980, Gould and Calloway produced a statistical analysis that concluded that both brachiopods and bivalves increased all the way from the Paleozoic to modern times, but bivalves increased faster; the Permian–Triassic extinction was moderately severe for bivalves but devastating for brachiopods, so that brachiopods for the first time were less diverse than bivalves and their diversity after the Permian increased from a very low base; there is no evidence that bivalves out-competed brachiopods, and short-term increases or decreases for both groups appeared synchronously. In 2007 Knoll and Bambach concluded that brachiopods were one of several groups that were most vulnerable to the Permian–Triassic extinction, as all had calcareous hard parts (made of calcium carbonate) and had low and weak respiratory systems.
Brachiopod fossils have been useful indicators of climate changes during the Paleozoic era. When global temperatures were low, as in much of the Ordovician, the large difference in temperature between equator and poles created different collections of fossils at different . On the other hand, warmer periods, such much of the Silurian, created smaller difference in temperatures, and all seas at the low to middle latitudes were colonized by the same few brachiopod species.
Nielsen views the brachiopods and closely related as affiliated with the deuterostome pterobranchs because their lophophores are driven by one cilia per cell, while those of , which he regards as protostomes, have multiple cilia per cell. However, pterobranchs are and probably closely related to , and there is no evidence that the latest common ancestor of pterobranchs and other hemichordates or the latest common ancestor of hemichordates and echinoderms was sessile and fed by means of tentacles.
From 1988 onwards analyses based on molecular phylogeny, which compares biochemistry features such as similarities in DNA, have placed brachiopods among the Lophotrochozoa, a protostome super-phylum that includes , and but excludes the other protostome super-phylum Ecdysozoa, whose members include . This conclusion is unanimous among molecular phylogeny studies that use a wide selection of genes: Ribosomal DNA, Hox genes, protein genes, single Cell nucleus protein genes and sets of nuclear protein genes.
Some combined studies in 2000 and 2001, using both molecular and morphological data, support brachiopods as Lophotrochozoa, while others in 1998 and 2004 concluded that brachiopods were deuterostomes.
While all molecular phylogeny studies and half the combined studies until 2008 conclude that brachiopods are , they could not identify which lophotrochozoan phylum were the closest relatives of brachiopods—except phoronids, which are a sub-group of brachiopods. However, in 2008 two analyses found that brachiopods' closest lophotrochozoan relatives were nemertea. The authors found this surprising, since nemertines have spiral cleavage in the early stages of cell division and form a trochophore larva, while brachiopods have radial cleavage and a larva that shows no sign of having evolved from a trochophore. Another study in 2008 also concluded that brachiopods are closely related to nemertines, casting doubt on the idea that brachiopods are part of a clade Lophophorata of lophophore-feeding animals within the lophotrochozoans.
|
|