Product Code Database
Example Keywords: scarf -cap $81
   » Wiki: Bactericide
Tag Wiki 'Bactericide'.
Tag

A bactericide or bacteriocide, sometimes abbreviated Bcidal, is a substance which kills . Bactericides are , , or . However, material surfaces can also have bactericidal properties based solely on their physical surface structure, as for example biomaterials like insect wings.


Disinfectants
The most used are those applying
  • active (i.e., , , dichloroisocyanurate and trichloroisocyanurate, wet chlorine, , etc.),
  • active (, such as , potassium persulfate, , sodium percarbonate, and ),
  • (, Lugol's solution, iodine tincture, iodinated nonionic surfactants),
  • concentrated (mainly , 1-propanol, called also and 2-propanol, called and mixtures thereof; further, 2-phenoxyethanol and 1- and 2-phenoxypropanols are used),
  • (such as (also called "carbolic acid"), such as , halogenated (chlorinated, brominated) phenols, such as , , , , pentachlorophenol, salts and isomers thereof),
  • cationic surfactants, such as some quaternary ammonium cations (such as benzalkonium chloride, cetyl trimethylammonium bromide or chloride, didecyldimethylammonium chloride, cetylpyridinium chloride, benzethonium chloride) and others, non-quaternary compounds, such as , , dihydrochloride etc.),
  • strong , such as and solutions;
  • and their salts, such as colloidal , , mercury chloride, salts, , copper oxide-chloride etc. Heavy metals and their salts are the most toxic and environment-hazardous bactericides and therefore their use is strongly discouraged or prohibited
  • strong (phosphoric, nitric, sulfuric, amidosulfuric, toluenesulfonic acids), pH < 1, and
  • (sodium, potassium, calcium hydroxides), such as of pH > 13, particularly under elevated temperature (above 60 °C), kills bacteria.


Antiseptics
As (i.e., germicide agents that can be used on human or animal body, skin, mucosae, wounds and the like), few of the above-mentioned disinfectants can be used, under proper conditions (mainly concentration, pH, temperature and toxicity toward humans and animals). Among them, some important are
  • properly diluted preparations (f.e. Dakin's solution, 0.5% sodium or potassium hypochlorite solution, pH-adjusted to pH 7–8, or 0.5–1% solution of sodium benzenesulfochloramide ( B)), some
  • preparations, such as in various galenics (ointment, solutions, wound plasters), in the past also Lugol's solution,
  • such as urea perhydrate solutions and pH- 0.1 – 0.25% peracetic acid solutions,
  • alcohols with or without antiseptic additives, used mainly for skin antisepsis,
  • weak such as , , and
  • some compounds, such as , and Dibromol, and
  • cationic surfactants, such as 0.05–0.5% benzalkonium, 0.5–4% , 0.1–2% octenidine solutions.
Others are generally not applicable as safe antiseptics, either because of their or nature.


Antibiotics
Bactericidal kill bacteria; antibiotics slow their growth or reproduction.

Bactericidal antibiotics that inhibit cell wall synthesis: the beta-lactam antibiotics ( derivatives (), (), , and ) and .

Also bactericidal are , , , , , .

are usually considered bactericidal, although they may be bacteriostatic with some organisms.

As of 2004, the distinction between bactericidal and bacteriostatic agents appeared to be clear according to the basic/clinical definition, but this only applies under strict laboratory conditions and it is important to distinguish microbiological and clinical definitions. The distinction is more arbitrary when agents are categorized in clinical situations. The supposed superiority of bactericidal agents over bacteriostatic agents is of little relevance when treating the vast majority of infections with gram-positive bacteria, particularly in patients with uncomplicated infections and noncompromised immune systems. Bacteriostatic agents have been effectively used for treatment that are considered to require bactericidal activity. Furthermore, some broad classes of antibacterial agents considered bacteriostatic can exhibit bactericidal activity against some bacteria on the basis of in vitro determination of MBC/MIC values. At high concentrations, bacteriostatic agents are often bactericidal against some susceptible organisms. The ultimate guide to treatment of any infection must be clinical outcome.


Surfaces
Material surfaces can exhibit bactericidal properties because of their crystallographic surface structure.

Somewhere in the mid-2000s it was shown that metallic can kill bacteria. The effect of a silver nanoparticle for example depends on its size with a preferential diameter of about 1–10 nm to interact with bacteria.

In 2013, wings were found to have a selective anti-gram-negative bactericidal effect based on their physical surface structure. Mechanical deformation of the more or less rigid found on the wing releases energy, striking and killing bacteria within minutes, hence called a mechano-bactericidal effect.

In 2020 researchers combined cationic polymer adsorption and femtosecond laser surface structuring to generate a bactericidal effect against both gram-positive Staphylococcus aureus and gram-negative bacteria on borosilicate glass surfaces, providing a practical platform for the study of the bacteria-surface interaction.


See also

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time