Babbling is a stage in child development and a state in language acquisition during which an infant appears to be experimenting with uttering articulate sounds, but does not yet produce any recognizable words. Babbling begins shortly after birth and progresses through several stages as the infant's repertoire of sounds expands and vocalizations become more speech-like.Oller, D. K. The Emergence of the Speech Capacity. Lawrence Erlbaum Associates, 2000. Infants typically begin to produce recognizable words when they are around 12 months of age, though babbling may continue for some time afterward.
Babbling can be seen as a precursor to language development or simply as vocal experimentation. The physical structures involved in babbling are still being developed in the first year of a child's life. This continued physical development is responsible for some of the changes in abilities and variations of sound babies can produce. Abnormal developments such as certain medical conditions, developmental delays, and hearing impairments may interfere with a child's ability to babble normally. Though there is still disagreement about the uniqueness of language to humans, babbling is not unique to the human species.
The sounds of babbling are produced before an infant begins to construct recognizable words. This can be partly attributed to the immaturity of the vocal tract and neuromusculature at this age in life. Infants first begin vocalizing by crying, followed by cooing and then vocal play. These first forms of sound production are the easiest for children to use because they contain natural, reflexive, mostly vowel sounds.
Babbling usually occurs in all children acquiring language. Particularly it has been studied in English, Italian, Korean, French, Spanish, Japanese and Swedish. Infants across the world follow general trends in babbling tendencies. Differences that do appear are the result of the infants' sensitivity to the characteristics of the language(s) they are exposed to. Infants mimic the prosody of the language(s) they are exposed to. They use intonation patterns and timing that matches the characteristics of their parent language. Infants also babble using the consonants and vowels that occur most frequently in their parent language. Most babbling consists of a small number of sounds, which suggests the child is preparing the basic sounds necessary to speak the language to which they are exposed.
The consonants that babbling infants produce tend to be any of the following: . The following consonants tend to be infrequently produced during phonological development: . The complexity of the sounds that infants produce makes them difficult to categorize, but the above rules tend to hold true regardless of the language to which children are exposed.
The sounds produced in babble have been categorised relative to their components. For example, babble may be broken down into syllables that contain a consonant and a vowel (CV syllables) and syllables that contain only a vowel sound (non-CV syllables). These components have been studied in relation to speech development in children, and have been found to relate to future speech outcomes.
If babbling occurs during the first year of life, it can typically be concluded that the child is developing speech normally. As babies grow and change, their vocalizations will change as well.
From birth to 1 month, babies produce mainly pleasure sounds, cries for assistance, and responses to the human voice.
Around 2 months, babies can distinguish between different speech sounds, and can make "goo"ing sounds.
Around 3 months, babies begin making elongated vowel sounds "oooo" "aaaa", and will respond vocally to speech of others. They continue to make predominantly vowel sounds.
Around 4 months, babies may vary their pitch, and imitate tones in adult speech.
Around 5 months, babies continue to experiment with sound, imitating some sounds made by adults.
Around 6 months, babies vary volume, pitch and rate. When infants are 6 months old they are finally able to control the opening and closing of the vocal tract, and upon obtaining this ability, infants begin to distinguish between the different sounds of vowels and consonants. This age is often distinguished as the beginning of the canonical stage. During the canonical stage, the babbling involves Reduplication sounds containing alternations of vowels and consonants, for example, "baba" or "bobo". Reduplicated babbling (also known as canonical babbling) consists of repeated syllables consisting of consonant and a vowel such as "da da da da" or "ma ma ma ma".
Around 7 months, babies can produce several sounds in one breath, and they also recognize different tones and inflections in other speakers.
Around 8 months, babies can repeat Prosodic stress syllables. They imitate gestures and tonal quality of adult speech. They also produce variegated babbling. Variegated babbles contain mixes of consonant vowel combinations such as "ka da by ba mi doy doy". Variegated babbling differs from reduplicated babbling in terms of the variation and complexity of syllables that are produced.
Around 9–10 months, babies can imitate non speech sounds, and speech-like sounds if they are in the child's repertoire of sounds. Infant babbling begins to resemble the native language of a child. The final stage is known as conversational babbling, or the "jargon stage". Usually occurring by about ten months of age, the jargon stage is defined as "pre-linguistic vocalizations in which infants use adult-like stress and intonation".Sroufe, Cooper, & Dehart, 1996, p. 258. The general structure of the syllables that they are producing is very closely related to the sounds of their native language and this form of babbling significantly predicts the form of early words.
Around 11 months, babies imitate , Isochrony, and expressions of speakers.
By 12 months, babies typically can speak one or more words. These words now Reference to the entity which they name; they are used to gain attention or for a specific purpose. Children continue to produce jargon babbles beyond their first words.
All babies imitate with their hands the movements that they see. Typical gestures for example are raising arms to be lifted up, or grabbing/reaching to indicate wanting a bottle; these are used referentially. In addition, infants who grow up with a sign language begin to make gestures that are distinct from all other hand movements and gestures.
After it was established that infants could babble with their hands and their mouths, the patterns in which productions occurred were studied. Speaking and signing infants follow very similar maturational paths in language acquisition. Both go through a number of stages, and exhibit similar complexity in their babbling sequences. In studies where deaf and hearing children were compared, children learning sign language produced more multi-movement manual babbling than children who were not learning a sign language. There are three main components of manual babbling. The hand gestures contain a restricted set of phonetic units, show a syllabic organization, and are used without reference or meaning. This is comparable to aspects of vocal babbling as mentioned above. It is difficult to study manual babbling as often the manual activity can be mistaken as gestures rather than signs. When signing children are in fact babbling it will most often take place in front of their torso in a designated area that is called the phonetic space. One of the most common forms of manual babbling is the extension and spreading of all fingers. This babble is also one of the first indicators that an infant will begin to make in manual communication.
Children are able to produce signs correctly, which is important since many articulation tendencies of manual babbling transfer to the children's early sign production. Children acquire signs for the same concepts as speaking children's words, and in the same stage of development.
Reduplicated babbling (such as 'bababa') involves a rhythmic opening and closing of the jaw. According to the frame dominance theory, when the mandible (jaw) is elevated, a consonant sound will be produced. When the mandible is lowered, a vowel-like sound is produced. Therefore, during a reduplicated sequence of sounds, the consonant and vowels are alternated as the mandible elevates and depresses. The opening and closing of the mouth alone will not produce babbling, and phonation (or voicing) is necessary during the movement in order to create a meaningful sound. Other important oral structures involved in articulation, such as the tongue, lips and teeth remain in a stable resting position during babbling. Sometimes during the babbling period, the motions can be made without any vocalization at all. Signing infants produce manual babbling through similar rhythmic alternations, but they perform with their hands instead of their mouths. As a baby goes beyond the reduplicated sequences of babbling, they exhibit equal sized mouth or hand openings on the right and left sides.
A number of solutions have been used for hearing-impaired humans to gain auditory experience, one of which is hearing aids; they can be used to help infants reach babbling stages earlier. Cochlear implants have also been tested. Once the surgical implantation is complete, an infant has the opportunity to experience spoken language input. Once language has been heard, the infant begins to babble and speak in rhythmic patterns just as hearing infants do.
Songbirds produce varieties of immature songs that are referred to as babbling because the immature songs precede those that are fully developed. As with humans, if these songs are reinforced with positive social feedback, they are more likely to recur. Other conspecifics provide feedback, especially the females in species for which only the males produce song. If females provide more social signals as feedback, males will develop more mature songs at a faster rate than other male birds. Young birds require reinforcement from adults in order to finalize their songs. Another relation to human infants is that the amount of vocalizations is not key, but rather the quality of the sounds that is retained and resembles the final produce of language.
The physiology of the animal is important. The properties of the ear and vocal tract, as well as the brain regions used in analyzing and processing information are critical determinants of how song is interpreted and later produced. In studies using isolated birds that have not had exposure to song, they produce an abnormal 'isolate song' that nevertheless contains species-specific aspects. This shows that the neural pathways have predetermined features that allow for such a phenomenon to occur. The pathways are able to allow for plasticity of the songs that can be learned in the future.
There is an important phase in development when song learning is best accomplished. This phase is called the 'sensitive period' and the amount of change that a songbird experiences in adulthood varies by species. Young birds have a production phase after a listening phase of development. The production of song is called 'subsong' where vocalizations resemble that of an adult as time passes. Memory for songs is able to form before the period where learning to sing occurs. Social interaction is important in vocal learning where non-singing females can even influence an infant through feedback.
There are a total of 16 call types in pygmy marmoset babbling language. Different calls serve different survival functions such as when desiring food, social interaction or during times of alarm. As human infants have, marmoset babies have higher rates of social interaction when producing babbling sounds. During the juvenile age, marmosets often regress back to babbling stages if a new infant is born. It is suggested that their production of babbling calls increases because they are seeking attention and social interaction. Another babbling occurrence during the juvenile age is the addition of territorial calls and mild threat vocalizations. Although babbling is important for practising adult calls during the juvenile age, babbling decreases with age in pygmy marmosets. Overall, babbling progresses through a series of stages from infancy to adulthood and slowly leads to the construction of adult calls.
|
|