An axion () is a hypothetical elementary particle originally theorized in 1978 independently by Frank Wilczek and Steven Weinberg as the Goldstone boson of Peccei–Quinn theory, which had been proposed in 1977 to solve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter.
The oscillations of the axion field about the minimum of the effective potential, the so-called misalignment mechanism, generate a cosmological population of cold axions with an abundance depending on the mass of the axion. With a mass above 5 electron-volt ( times the electron mass) axions could account for dark matter, and thus be both a dark-matter candidate and a solution to the strong CP problem. If inflation occurs at a low scale and lasts sufficiently long, the axion mass can be as low as 1 peV/2.
There are two distinct scenarios in which the axion field begins its evolution, depending on the following two conditions:
The PQ symmetry is spontaneously broken during inflation. This condition is realized whenever the axion energy scale is larger than the Hubble rate at the end of inflation. |
The PQ symmetry is never restored after its spontaneous breaking occurs. This condition is realized whenever the axion energy scale is larger than the maximum temperature reached in the post-inflationary Universe. |
Broadly speaking, one of the two possible scenarios outlined in the two following subsections occurs:
The proper treatment in this scenario is to solve numerically the equation of motion of the PQ field in an expanding Universe, in order to capture all features coming from the misalignment mechanism, including the contribution from topological defects like "axionic" cosmic string and . An axion mass estimate between 0.05 and 1.50 meV was reported by Borsanyi et al. (2016). The result was calculated by simulating the formation of axions during the post-inflation period on a supercomputer.
Progress in the late 2010s in determining the present abundance of a KSVZ-type axion using numerical simulations lead to values between 0.02 and 0.1 meV, although these results have been challenged by the details on the power spectrum of emitted axions from strings.
The very weakly coupled axion is also very light, because axion couplings and mass are proportional. Satisfaction with "invisible axions" changed when it was shown that any very light axion would have been overproduced in the early universe and therefore must be excluded.
Treating the reduced Planck constant , speed of light , and permittivity of free space all equivalent to 1, the electrodynamic equations are:
Above, a dot above a variable denotes its time derivative; the dot spaced between variables is the vector dot product; the factor is the axion-to-photon coupling constant.
Alternative forms of these equations have been proposed, which imply completely different physical signatures. For example, Visinelli wrote a set of equations that imposed duality symmetry, assuming the existence of magnetic monopoles. However, these alternative formulations are less theoretically motivated, and in many cases cannot even be derived from an action.
This term leads to several interesting predicted properties including a quantized magnetoelectric effect. Evidence for this effect has been given in THz spectroscopy experiments performed at the Johns Hopkins University on quantum regime thin film topological insulators developed at Rutgers University.
In 2019, a team at the Max Planck Institute for Chemical Physics of Solids published their detection of an axion insulator phase of a Weyl semimetal material. In the axion insulator phase, the material has an axion-like quasiparticle – an excitation of electrons that behave together as an axion – and its discovery demonstrates the consistency of axion electrodynamics as a description of the interaction of axion-like particles with electromagnetic fields. In this way, the discovery of axion-like quasiparticles in axion insulators provides motivation to use axion electrodynamics to search for the axion itself.
The Axion Dark Matter Experiment (ADMX) at the University of Washington is a haloscope that uses a strong magnetic field to detect the possible weak conversion of axions to . ADMX searches the galactic dark matter halo
Other experiments of this type include DMRadio, HAYSTAC,
CULTASK,
and ORGAN.
HAYSTAC completed the first scanning run of a haloscope above 20 μeV in the late 2010s.
Another type of direct conversion experiments are the Helioscope where the magnet is pointed at the Sun. Axions produced in the Sun would have an energy range of 1-10 keV and can therefore be converted into X-rays of the same energy in the magnet. The current state-of-the-art experiment is the CERN Axion Solar Telescope (CAST) which reached the axion-photon coupling limit of at 95% CL (for ≲ 0.02 eV) in 2024. The next-generation helioscope is the International AXion Observatory (IAXO), which is currently in development.
Axions can resonantly convert into photons in the of .
Axions can be produced in the Sun's core when X-rays scatter in strong electric fields. The CAST solar telescope is underway, and has set limits on coupling to photons and electrons. Axions may also be produced within neutron stars by nucleon–nucleon bremsstrahlung. The subsequent decay of axions to gamma rays allows constraints on the axion mass to be placed from observations of neutron stars in gamma-rays using the Fermi Gamma-ray Space Telescope. From an analysis of four neutron stars, Berenji et al. (2016) obtained a 95% confidence interval upper limit on the axion mass of .
In 2016, a theoretical team from Massachusetts Institute of Technology devised a possible way of detecting axions using a strong magnetic field that need be no stronger than that produced in an MRI scanning machine. It would show variation, a slight wavering, that is linked to the mass of the axion. Results from the ensuing experiment published in 2021 reported no evidence of axions in the mass range from 4.1x10−10 to 8.27x10−9 eV.
In 2022 the polarized light measurements of Messier 87* by the Event Horizon Telescope were used to constrain the mass of the axion assuming that hypothetical clouds of axions could form around a black hole, rejecting the approximate – range of mass values.
An experiment using this technique is the Cosmic Axion Spin Precession Experiment (CASPEr).
This interpretation of the seasonal variation is disputed by two Italian researchers, who identify flaws in the arguments of the Leicester group that are said to rule out an interpretation in terms of axions. Most importantly, the scattering in angle assumed by the Leicester group to be caused by magnetic field gradients during the photon production, necessary to allow the X-rays to enter the detector that cannot point directly at the sun, would dissipate the flux so much that the probability of detection would be negligible.
In 2013, Christian Beck suggested that axions might be detectable in Josephson junctions; and in 2014, he argued that a signature, consistent with a mass ≈110 μeV, had in fact been observed in several preexisting experiments.
In 2020, the XENON1T experiment at the Gran Sasso National Laboratory in Italy reported a result suggesting the discovery of solar axions. The results were not significant at the 5-sigma level required for confirmation, and other explanations of the data were possible though less likely. New observations made in July 2022 after the observatory upgrade to XENONnT discarded the excess, thus ending the possibility of new particle discovery.
Inflation theory suggests that if they exist, axions would be created abundantly during the Big Bang. Because of a unique coupling to the instanton field of the primordial universe (the "misalignment mechanism"), an effective dynamical friction is created during the acquisition of mass, following cosmic inflation. This robs all such primordial axions of their kinetic energy.
Ultralight axion (ULA) with is a kind of scalar field dark matter that seems to solve the small scale problems of CDM. A single ULA with a GUT scale decay constant provides the correct relic density without fine-tuning.
Axions would also have stopped interaction with normal matter at a different moment after the Big Bang than other more massive dark particles. The lingering effects of this difference could perhaps be calculated and observed astronomically.
If axions have low mass, thus preventing other decay modes (since there are no lighter particles to decay into), the low coupling constant thus predicts that the axion is not scattered out of its state despite its small mass so that the universe would be filled with a very cold Bose–Einstein condensate of primordial axions. Hence, axions could plausibly explain the dark matter problem of physical cosmology. Observational studies are underway, but they are not yet sufficiently sensitive to probe the mass regions if they are the solution to the dark matter problem with the fuzzy dark matter region starting to be probed via superradiance. High mass axions of the kind searched for by Jain and Singh (2007) would not persist in the modern universe. Moreover, if axions exist, scatterings with other particles in the thermal bath of the early universe unavoidably produce a population of hot axions.
Low mass axions could have additional structure at the galactic scale. If they continuously fall into galaxies from the intergalactic medium, they would be denser in "caustic" rings, just as the stream of water in a continuously flowing fountain is thicker at its peak. The gravitational effects of these rings on galactic structure and rotation might then be observable. Other cold dark matter theoretical candidates, such as WIMPs and , could also form such rings, but because such candidates are and thus experience friction or scattering among themselves, the rings would be less sharply defined.
João G. Rosa and Thomas W. Kephart suggested that axion clouds formed around unstable primordial black holes might initiate a chain of reactions that radiate electromagnetic waves, allowing their detection. When adjusting the mass of the axions to explain dark matter, the pair discovered that the value would also explain the luminosity and wavelength of fast radio bursts, being a possible origin for both phenomena. In 2022 a similar hypothesis was used to constrain the mass of the axion from data of M87*.
In 2020, it was proposed that the axion field might actually have influenced the evolution of the early Universe by creating more imbalance between the amounts of matter and antimatter – which possibly resolves the baryon asymmetry problem.
The axino has been predicted to be the lightest supersymmetric particle in such a model.
In part due to this property, it is also considered a candidate for dark matter.
Polarized light in a magnetic field
Light shining through walls
Astrophysical axion searches
Searches for resonance effects
Dark matter recoil searches
Nuclear spin precession
Searches at particle colliders
Disputed detections
Properties
Predictions
Cosmological implications
Supersymmetry
See also
Footnotes
Sources
External links
Experiments
Popular science coverage
|
|