Product Code Database
Example Keywords: mmorpg -ring $13
barcode-scavenger
   » » Wiki: Atmosphere
Tag Wiki 'Atmosphere'.
Tag

An atmosphere () is a layer of that envelop an astronomical object, held in place by the of the object. A planet retains an atmosphere when the gravity is great and the of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque ; stars of low temperature might have outer atmospheres containing compound .

The atmosphere of Earth is composed of (78%), (21%), (0.9%), carbon dioxide (0.04%) and trace gases. Most organisms use oxygen for respiration; lightning and bacteria perform nitrogen fixation which produces that is used to make and ; , , and use carbon dioxide for . The layered composition of the atmosphere minimises the harmful effects of , radiation, , and and thus protects the organisms from genetic damage. The current composition of the atmosphere of the Earth is the product of billions of years of biochemical modification of the by living organisms.


Occurrence and compositions

Origins
Atmospheres are clouds of gas bound to and engulfing an astronomical focal point of sufficiently dominating mass, adding to its mass, possibly escaping from it or collapsing into it. Because of the latter, such can develop from interstellar or protoplanetary disks into astronomical objects with varyingly thick atmospheres, or fusors.

Composition and thickness is originally determined by the stellar nebula's chemistry and temperature, but can also by a product processes within the astronomical body outgasing a different atmosphere.


Compositions
The atmospheres of the planets and are principally composed of and , and .

The composition of Earth's atmosphere is determined by the by-products of the life that it sustains. Dry air (mixture of gases) from Earth's atmosphere contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and traces of hydrogen, helium, and other "noble" gases (by volume), but generally a variable amount of water vapor is also present, on average about 1% at sea level.

The low temperatures and higher gravity of the Solar System's , , and —allow them more readily to retain gases with low . These planets have hydrogen–helium atmospheres, with trace amounts of more complex compounds.

Two satellites of the outer planets possess significant atmospheres. Titan, a moon of Saturn, and Triton, a moon of Neptune, have atmospheres mainly of . When in the part of its orbit closest to the Sun, has an atmosphere of nitrogen and methane similar to Triton's, but these gases are frozen when it is farther from the Sun.

Other bodies within the Solar System have extremely thin atmospheres not in equilibrium. These include the ( gas), Mercury (sodium gas), Europa (oxygen), Io (), and Enceladus ().

The first exoplanet whose atmospheric composition was determined is HD 209458b, a gas giant with a close orbit around a star in the Pegasus. Its atmosphere is heated to temperatures over 1,000 K, and is steadily escaping into space. Hydrogen, oxygen, carbon and sulfur have been detected in the planet's inflated atmosphere.


Atmospheres in the Solar System
  • Atmosphere of the Sun
  • Atmosphere of Mercury
  • Atmosphere of Venus
  • Atmosphere of Earth
    • Atmosphere of the Moon
  • Atmosphere of Mars
  • Atmosphere of Ceres
  • Atmosphere of Jupiter
    • Atmosphere of Io
    • Atmosphere of Callisto
    • Atmosphere of Europa
    • Atmosphere of Ganymede
  • Atmosphere of Saturn
    • Atmosphere of Titan
    • Atmosphere of Enceladus
  • Atmosphere of Uranus
    • Atmosphere of Titania
  • Atmosphere of Neptune
    • Atmosphere of Triton
  • Atmosphere of Pluto


Structure of atmosphere

Earth
The atmosphere of Earth is composed of layers with different properties, such as specific gaseous composition, temperature, and pressure.

The is the lowest layer of the atmosphere. This extends from the planetary surface to the bottom of the . The troposphere contains 75–80% of the mass of the atmosphere, and is the atmospheric layer wherein the weather occurs; the height of the troposphere varies between 17 km at the equator and 7.0 km at the poles.

The extends from the top of the troposphere to the bottom of the , and contains the , at an altitude between 15 km and 35 km. It is the atmospheric layer that absorbs most of the ultraviolet radiation that Earth receives from the Sun.

The ranges from 50 km to 85 km and is the layer wherein most are incinerated before reaching the surface.

The extends from an altitude of 85 km to the base of the at 690 km and contains the , where solar radiation ionizes the atmosphere. The density of the ionosphere is greater at short distances from the planetary surface in the daytime and decreases as the ionosphere rises at night-time, thereby allowing a greater range of radio frequencies to travel greater distances.

The begins at 690 to 1,000 km from the surface, and extends to roughly 10,000 km, where it interacts with the of Earth.


Pressure
Atmospheric pressure is the (per unit-area) perpendicular to a unit-area of planetary surface, as determined by the of the vertical column of atmospheric gases. In said atmospheric model, the atmospheric pressure, the weight of the mass of the gas, decreases at high altitude because of the diminishing mass of the gas above the point of measurement. The units of air pressure are based upon the standard atmosphere (atm), which is 101,325 Pa (equivalent to 760  or 14.696 psi). The height at which the atmospheric pressure declines by a factor of e (an irrational number equal to 2.71828) is called the ( H). For an atmosphere of uniform temperature, the scale height is proportional to the atmospheric temperature and is inversely proportional to the product of the mean of dry air, and the local acceleration of gravity at the point of barometric measurement.


Escape
differs significantly among the planets. For example, the large gravitational force of the giant planet retains light gases such as and that escape from objects with lower gravity. Secondly, the distance from the Sun determines the energy available to heat atmospheric gas to the point where some fraction of its molecules' exceed the planet's , allowing those to escape a planet's gravitational grasp. Thus, distant and cold Titan, Triton, and are able to retain their atmospheres despite their relatively low gravities.

Since a collection of gas molecules may be moving at a wide range of velocities, there will always be some fast enough to produce a slow leakage of gas into space. Lighter molecules move faster than heavier ones with the same thermal , and so gases of low are lost more rapidly than those of high molecular weight. It is thought that and may have lost much of their water when, after being photodissociated into hydrogen and oxygen by solar radiation, the hydrogen escaped. Earth's magnetic field helps to prevent this, as, normally, the solar wind would greatly enhance the escape of hydrogen. However, over the past 3 billion years Earth may have lost gases through the magnetic polar regions due to auroral activity, including a net 2% of its atmospheric oxygen. The net effect, taking the most important escape processes into account, is that an intrinsic magnetic field does not protect a planet from atmospheric escape and that for some magnetizations the presence of a magnetic field works to increase the escape rate.

Other mechanisms that can cause atmosphere depletion are -induced sputtering, erosion, , and sequestration—sometimes referred to as "freezing out"—into the and polar caps.


Terrain
Atmospheres have dramatic effects on the surfaces of rocky bodies. Objects that have no atmosphere, or that have only an exosphere, have terrain that is covered in . Without an atmosphere, the planet has no protection from , and all of them collide with the surface as and create craters.

For planets with a significant atmosphere, most burn up as before hitting a planet's surface. When meteoroids do impact, the effects are often erased by the action of wind.

is a significant factor in shaping the terrain of rocky planets with atmospheres, and over time can erase the effects of both craters and . In addition, since cannot exist without pressure, an atmosphere allows liquid to be present at the surface, resulting in , and . and Titan are known to have liquids at their surface and terrain on the planet suggests that had liquid on its surface in the past.


Outside the Solar System
  • Atmosphere of HD 209458 b


Circulation
The circulation of the atmosphere occurs due to thermal differences when becomes a more efficient transporter of heat than thermal radiation. On planets where the primary heat source is solar radiation, excess heat in the tropics is transported to higher latitudes. When a planet generates a significant amount of heat internally, such as is the case for , convection in the atmosphere can transport thermal energy from the higher temperature interior up to the surface.


Importance
From the perspective of a planetary , the atmosphere acts to shape a planetary surface. picks up and other particles which, when they collide with the terrain, erode the and leave deposits (eolian processes). and precipitations, which depend on the atmospheric composition, also influence the relief. Climate changes can influence a planet's geological history. Conversely, studying the surface of the Earth leads to an understanding of the atmosphere and climate of other planets.

For a , the composition of the Earth's atmosphere is a factor affecting the and its variations.

For a or , the Earth's atmospheric composition is closely dependent on the appearance of life and its .


See also
  • (evaporimeter)
  • Atmospheric pressure
  • International Standard Atmosphere
  • Kármán line


Further reading


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time