An aquifer is an underground layer of water-bearing material, consisting of permeable or fractured rock, or of unconsolidated materials (gravel, sand, or silt). Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related concepts include aquitard, a bed of low permeability along an aquifer, and aquiclude (or aquifuge), a solid and impermeable region underlying or overlying an aquifer, the pressure of which could lead to the formation of a confined aquifer. Aquifers can be classified as saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; and transboundary aquifer.
Groundwater from aquifers can be sustainably harvested by humans through the use of qanats leading to a well. This groundwater is a major source of fresh water for many regions, although it can present various challenges, such as overdrafting (extracting groundwater beyond the equilibrium yield of the aquifer), groundwater-related subsidence of land, and the salinization or pollution of the groundwater.
Many desert areas have limestone hills or mountains within them or close to them that can be exploited as groundwater resources. Part of the Atlas Mountains in North Africa, the Mount Lebanon and Anti-Lebanon ranges between Syria and Lebanon, the Jebel Akhdar in Oman, parts of the Sierra Nevada and neighboring ranges in the United States' Southwest, have shallow aquifers that are exploited for their water. Overexploitation can lead to the exceeding of the practical sustained yield; i.e., more water is taken out than can be replenished.
Along the coastlines of certain countries, such as Libya and Israel, increased water usage associated with population growth has caused a lowering of the water table and the subsequent contamination of the groundwater with saltwater from the sea.
In 2013 large freshwater aquifers were discovered under continental shelves off Australia, China, North America and South Africa. They contain an estimated half a million cubic kilometers of "low salinity" water that could be economically processed into Drinking water. The reserves formed when ocean levels were lower and rainwater made its way into the ground in land areas that were not submerged until the ice age ended 20,000 years ago. The volume is estimated to be 100 times the amount of water extracted from other aquifers since 1900.
Saturated means the pressure head of the water is greater than atmospheric pressure (it has a gauge pressure > 0). The definition of the water table is the surface where the Hydraulic head is equal to atmospheric pressure (where gauge pressure = 0).
Unsaturated conditions occur above the water table where the pressure head is negative (absolute pressure can never be negative, but gauge pressure can) and the water that incompletely fills the pores of the aquifer material is under suction. The water content in the unsaturated zone is held in place by surface Adhesion and it rises above the water table (the zero-gauge-pressure isobar) by capillary action to saturate a small zone above the phreatic surface (the capillary fringe) at less than atmospheric pressure. This is termed tension saturation and is not the same as saturation on a water-content basis. Water content in a capillary fringe decreases with increasing distance from the phreatic surface. The capillary head depends on soil pore size. In soils with larger pores, the head will be less than in clay soils with very small pores. The normal capillary rise in a clayey soil is less than but can range between .
The capillary rise of water in a small-diameter tube involves the same physical process. The water table is the level to which water will rise in a large-diameter pipe (e.g., a well) that goes down into the aquifer and is open to the atmosphere.
An aquitard is a zone within the Earth that restricts the flow of groundwater from one aquifer to another. A completely impermeable aquitard is called an aquiclude or aquifuge. Aquitards contain layers of either clay or non-porous rock with low hydraulic conductivity.
In mountainous areas (or near rivers in mountainous areas), the main aquifers are typically unconsolidated alluvium, composed of mostly horizontal layers of materials deposited by water processes (rivers and streams), which in cross-section (looking at a two-dimensional slice of the aquifer) appear to be layers of alternating coarse and fine materials. Coarse materials, because of the high energy needed to move them, tend to be found nearer the source (mountain fronts or rivers), whereas the fine-grained material will make it farther from the source (to the flatter parts of the basin or overbank areas—sometimes called the pressure area). Since there are less fine-grained deposits near the source, this is a place where aquifers are often unconfined (sometimes called the forebay area), or in hydraulic communication with the land surface.
If the distinction between confined and unconfined is not clear geologically (i.e., if it is not known if a clear confining layer exists, or if the geology is more complex, e.g., a fractured bedrock aquifer), the value of storativity returned from an aquifer test can be used to determine it (although aquifer tests in unconfined aquifers should be interpreted differently than confined ones). Confined aquifers have very low Specific storage values (much less than 0.01, and as little as ), which means that the aquifer is storing water using the mechanisms of aquifer matrix expansion and the compressibility of water, which typically are both quite small quantities. Unconfined aquifers have storativities (typically called Specific storage) greater than 0.01 (1% of bulk volume); they release water from storage by the mechanism of actually draining the pores of the aquifer, releasing relatively large amounts of water (up to the drainable porosity of the aquifer material, or the minimum volumetric water content).
Semi-confined aquifers with one or more aquitards work as an anisotropic system, even when the separate layers are isotropic, because the compound Kh and Kv values are different (see hydraulic transmissivity and hydraulic resistance).
When calculating flow to drains The energy balance of groundwater flow applied to subsurface drainage in anisotropic soils by pipes or ditches with entrance resistance. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. On line : [1] . Paper based on: R.J. Oosterbaan, J. Boonstra and K.V.G.K. Rao, 1996, "The energy balance of groundwater flow". Published in V.P.Singh and B.Kumar (eds.), Subsurface-Water Hydrology, pp. 153–60, Vol. 2 of Proceedings of the International Conference on Hydrology and Water Resources, New Delhi, India, 1993. Kluwer Academic Publishers, Dordrecht, The Netherlands. . On line : [2] . The corresponding "EnDrain" software can be downloaded from : [3], or from : [4] or flow to wellsILRI (2000), Subsurface drainage by (tube)wells: Well spacing equations for fully and partially penetrating wells in uniform or layered aquifers with or without anisotropy and entrance resistance, 9 pp. Principles used in the "WellDrain" model. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. On line : [5] . Download "WellDrain" software from : [6], or from : [7] in an aquifer, the anisotropy is to be taken into account lest the resulting design of the drainage system may be faulty.
Sandy deposits formed in shallow marine environments and in windblown sand dune environments have moderate to high permeability while sandy deposits formed in river environments have low to moderate permeability. Rainfall and snowmelt enter the groundwater where the aquifer is near the surface. Groundwater flow directions can be determined from potentiometric surface maps of water levels in wells and springs. and can be used with Darcy's law flow equations to determine the ability of a porous aquifer to convey water.
Analyzing this type of information over an area gives an indication how much water can be pumped without overdrafting and how contamination will travel. In porous aquifers groundwater flows as slow seepage in pores between sand grains. A groundwater flow rate of 1 foot per day (0.3 m/d) is considered to be a high rate for porous aquifers, as illustrated by the water slowly seeping from sandstone in the accompanying image to the left.
Porosity is important, but, alone, it does not determine a rock's ability to act as an aquifer. Areas of the Deccan Traps (a lava) in west central India are good examples of rock formations with high porosity but low permeability, which makes them poor aquifers. Similarly, the micro-porous (Upper Cretaceous) Chalk Group of south east England, although having a reasonably high porosity, has a low grain-to-grain permeability, with its good water-yielding characteristics mostly due to micro-fracturing and fissuring.
Characterization of karst aquifers requires field exploration to locate sinkhole, Losing stream, and springs in addition to studying . Conventional hydrogeologic methods such as aquifer tests and potentiometric mapping are insufficient to characterize the complexity of karst aquifers. These conventional investigation methods need to be supplemented with Dye tracing, measurement of spring discharges, and analysis of water chemistry. U.S. Geological Survey dye tracing has determined that conventional groundwater models that assume a uniform distribution of porosity are not applicable for karst aquifers.
Linear alignment of surface features such as straight stream segments and sinkholes develop along fracture traces. Locating a well in a fracture trace or intersection of fracture traces increases the likelihood to encounter good water production. Voids in karst aquifers can be large enough to cause destructive collapse or subsidence of the ground surface that can initiate a catastrophic release of contaminants. Groundwater flow rate in karst aquifers is much more rapid than in porous aquifers as shown in the accompanying image to the left. For example, in the Barton Springs Edwards aquifer, dye traces measured the karst groundwater flow rates from 0.5 to 7 miles per day (0.8 to 11.3 km/d). The rapid groundwater flow rates make karst aquifers much more sensitive to groundwater contamination than porous aquifers.
In the extreme case, groundwater may exist in underground rivers (e.g., underlying karst topography).
In the United States, the biggest users of water from aquifers include agricultural irrigation and oil and coal extraction. "Cumulative total groundwater depletion in the United States accelerated in the late 1940s and continued at an almost steady linear rate through the end of the century. In addition to widely recognized environmental consequences, groundwater depletion also adversely impacts the long-term sustainability of groundwater supplies to help meet the Nation’s water needs."
An example of a significant and sustainable carbonate aquifer is the Edwards Aquifer in central Texas. This carbonate aquifer has historically been providing high quality water for nearly 2 million people, and even today, is full because of tremendous recharge from a number of area streams, rivers and . The primary risk to this resource is human development over the recharge areas.
|
|