Product Code Database
Example Keywords: tetris -machine $55-190
   » » Wiki: Apomorphine
Tag Wiki 'Apomorphine'.
Tag

Apomorphine, sold under the brand name Apokyn among others, is a type of having activity as a non-selective which activates both D2-like and, to a much lesser extent, D1-like receptors. It also acts as an antagonist of 5-HT2 and α-adrenergic receptors with high affinity. The compound is an alkaloid belonging to nymphaea caerulea, or blue lotus, but is also historically known as a decomposition product made by boiling morphine with concentrated acid, hence the -morphine suffix. Contrary to its name, apomorphine does not actually contain morphine or its skeleton, nor does it bind to . The apo- prefix relates to it being a derivative ("comes from morphine").

Historically, apomorphine has been tried for a variety of uses, including as a way to relieve anxiety and craving in alcoholics, an emetic (to induce vomiting), for treating (repeated behaviour) in farmyard animals, and more recently in treating erectile dysfunction. Currently, apomorphine is used in the treatment of Parkinson's disease. It is a potent and should not be administered without an such as . The emetic properties of apomorphine are exploited in veterinary medicine to induce therapeutic in canines that have recently ingested toxic or foreign substances.

Apomorphine was also used as a private treatment of , a purpose for which it was championed by the author William S. Burroughs. Burroughs and others claimed that it was a "metabolic regulator" with a restorative dimension to a damaged or dysfunctional dopaminergic system. Despite anecdotal evidence that this offers a plausible route to an abstinence-based mode, no clinical trials have ever tested this hypothesis. A recent study indicates that apomorphine might be a suitable marker for assessing central system alterations associated with chronic heroin consumption. There is, however, no clinical evidence that apomorphine is an effective and safe treatment regimen for .


Medical uses

Parkinson's disease
The use of apomorphine to treat "the shakes" was first suggested by Weil in France in 1884, although seemingly not pursued until 1951. Its clinical use was first reported in 1970 by et al., although its emetic properties and short half-life made oral use impractical. A later study found that combining the drug with the improved results significantly. The commercialization of apomorphine for Parkinson's disease followed its successful use in patients with refractory motor fluctuations using intermittent rescue injections and continuous infusions. Apomorphine is used in advanced Parkinson's disease intermittent hypomobility ("off" episodes), where a decreased response to an anti-Parkinson drug such as causes and loss of muscle control.
(2025). 9780323376976, Elsevier Health Sciences. .
While apomorphine can be used in combination with , the intention is usually to reduce the L-DOPA dosing, as by this stage the patient often has many of caused by L-DOPA and hypermobility periods. When an episode sets in, the apomorphine is injected or applied sublingually, and signs subside. It is used an average of three times a day. Some people use portable mini-pumps that continuously infuse them with apomorphine, allowing them to stay in the "on" state and using apomorphine as an effective .
(2025). 9780750654289, Elsevier Health Sciences. .


Contraindications
The main and absolute contraindication to using apomorphine is the concurrent use of adrenergic receptor antagonists; combined, they cause a severe drop in blood pressure and . Alcohol causes an increased frequency of orthostatic hypotension (a sudden drop in blood pressure when getting up), and can also increase the chances of and . Dopamine antagonists, by their nature of competing for sites at dopamine receptors, reduce the effectiveness of the agonistic apomorphine.

IV administration of apomorphine is highly discouraged, as it can crystallize in the veins and create a blood clot () and block a pulmonary artery (pulmonary embolism).


Side effects
Nausea and vomiting are common side effects when first beginning therapy with apomorphine; antiemetics such as trimethobenzamide or domperidone, dopamine antagonists, are often used while first starting apomorphine. Around 50% of people grow tolerant enough to apomorphine's emetic effects that they can discontinue the antiemetic.

Other side effects include orthostatic hypotension and resultant fainting, , , , , paleness, and flushing. More serious side effects include dyskinesias (especially when taking L-DOPA), fluid accumulation in the limbs (), suddenly falling asleep, and , increased heart rate and heart palpitations, and persistent (). The priapism is caused by apomorphine increasing arterial blood supply to the . This side effect has been exploited in studies attempting to treat erectile dysfunction.

(2025). 9781405178723, John Wiley & Sons. .


Pharmacology

Mechanism of action
Apomorphine's is an of both D1 and D2 dopamine receptors, with higher activity at D2. The members of the D2 subfamily, consisting of D2, D3, and D4 receptors, are inhibitory G protein–coupled receptors. The D4 receptor in particular is an important target in the signaling pathway, and is connected to several neurological disorders. Shortage or excess of dopamine can prevent proper function and signaling of these receptors leading to disease states.

Apomorphine improves motor function by activating dopamine receptors in the nigrostriatal pathway, the , the , and the . It also increases blood flow to the supplementary motor area and to the dorsolateral prefrontal cortex (stimulation of which has been found to reduce the tardive dyskinesia effects of ).

(1999). 9781853173790, CRC Press. .
Parkinson's has also been found to have excess at the sites of neurodegeneration; both the ( R)- and ( S)-enantiomers of apomorphine are potent iron and radical scavengers.
(2025). 9780203337769, CRC Press. .

Apomorphine also decreases the breakdown of dopamine in the brain (though it inhibits its synthesis as well).

(2025). 9781468485141, Springer Science & Business Media. .
(1978). 9780080581064, Academic Press. .
It is an upregulator of certain neural growth factors, in particular NGF but not , downregulation of which has been associated with addictive behaviour in rats.

Apomorphine causes vomiting by acting on dopamine receptors in the chemoreceptor trigger zone of the medulla; this activates the nearby .

(2025). 9780813820613, John Wiley & Sons. .


Pharmacokinetics
While apomorphine has lower when taken orally, due to not being absorbed well in the GI tract and undergoing heavy first-pass metabolism, it has a bioavailability of 100% when given subcutaneously. It reaches peak plasma concentration in 10–60 minutes. Ten to twenty minutes after that, it reaches its peak concentration in the cerebrospinal fluid. Its lipophilic structure allows it to cross the blood–brain barrier.

Apomorphine possesses affinity for the following receptors (note that a higher Ki indicates a lower affinity): Note: Values for humans are used. If there is more than one value listed for humans, their average is used.

+ Dopamine ! Receptor !! Ki (nM) !Action
484(partial) agonista
52partial agonist (IA = 79% at D2S; 53% at D2L)
D326partial agonist (IA = 82%)
D44.37partial agonist (IA = 45%)
D5188.9(partial) agonista
aThough its efficacies at D1 and D5 are unclear, it is known to act as an agonist at these sites.

+ Serotonin ! Receptor !! Ki (nM) !Action
2,523partial agonist
2,951no action
5-HT1D1,230no action
5-HT2A120antagonist
5-HT2B132antagonist
5-HT2C102antagonist

+ Norepinephrine/Epinephrine ! Receptor !! Ki (nM) !Action
1,995antagonist
676antagonist
α1D-adrenergic64.6antagonist
α2A-adrenergic141antagonist
α2B-adrenergic66.1antagonist
α2C-adrenergic36.3antagonist

It has a Ki of over 10,000 nM (and thus negligible affinity) for β-adrenergic, H1, and mACh.

Apomorphine has a high clearance rate (3–5 L/kg/hr) and is mainly metabolized and excreted by the . It is likely that while the cytochrome P450 system plays a minor role, most of apomorphine's metabolism happens via auto-, , , , and . Only 3–4% of the apomorphine is excreted unchanged and into the urine. The is 30–60 minutes, and the effects of the injection last for up to 90 minutes.

Toxicity depends on the route of administration; the LD50s in mice were 300 mg/kg for the oral route, 160 mg/kg for , and 56 mg/kg intravenous.

(2025). 9780471476627, Wiley, John & Sons, Incorporated.


Chemistry

Properties
Apomorphine has a structure similar to that of dopamine.


Synthesis
Several techniques exist for the creation of apomorphine from morphine. In the past, had been combined with hydrochloric acid at high temperatures (around 150 °C) to achieve a low yield of apomorphine, ranging anywhere from 0.6% to 46%. More recent techniques create the apomorphine in a similar fashion, by heating it in the presence of any acid that will promote the essential dehydration rearrangement of morphine-type , such as . The method then deviates by including a water scavenger, which is essential to remove the water produced by the reaction that can react with the product and lead to decreased yield. The scavenger can be any reagent that will irreversibly react with water such as phthalic anhydride or titanium chloride. The temperature required for the reaction varies based upon choice of acid and water scavenger. The yield of this reaction is much higher: at least 55%.


Historical medical uses
The pharmacological effects of the naturally occurring analog in the blue lotus ( Nymphaea caerulea) were known to the ancient Egyptians and Mayans, with the plant featuring in tomb frescoes and associated with entheogenic rites. It is also observed in Egyptian erotic cartoons, suggesting that they were aware of its erectogenic properties.

The modern medical history of apomorphine begins with its synthesis by Arppe in 1845 from morphine and , although it was named sulphomorphide at first. Matthiesen and Wright (1869) used hydrochloric acid instead of sulfuric acid in the process, naming the resulting compound apomorphine. Initial interest in the compound was as an emetic, tested and confirmed safe by London doctor , and for the treatment of stereotypies in farmyard animals. Key to the use of apomorphine as a behavioural modifier was the research of Erich Harnack, whose experiments in rabbits (which do not vomit) demonstrated that apomorphine had powerful effects on the activity of rabbits, inducing licking, gnawing and in very high doses convulsions and death.


Treatment of alcoholism
Apomorphine was one of the earliest used pharmacotherapies for . The (1870s to 1900) contained apomorphine, among other ingredients, but the first medical reports of its use for more than pure emesis come from James Tompkins and Charles Douglas. Tompkins reported, after injection of 6.5 mg ("one tenth of a grain"):Douglas saw two purposes for apomorphine:This use of small, continuous doses (1/30th of a grain, or 2.16 mg by Douglas) of apomorphine to reduce alcoholic craving comes some time before 's discovery and publication of the idea of the "conditioned reflex" in 1903. This method was not limited to Douglas; the Irish doctor Francis Hare, who worked in a sanatorium outside London from 1905 onward, also used low-dose apomorphine as a treatment, describing it as "the most useful single drug in the therapeutics of inebriety". He wrote:He also noted there appeared to be a significant prejudice against the use of apomorphine, both from the associations of its name and doctors being reluctant to give hypodermic injections to alcoholics. In the US, the Harrison Narcotics Tax Act made working with any morphine derivatives extremely hard, despite apomorphine itself not being an opiate.

In the 1950s the neurotransmitter was discovered in the brain by Katharine Montagu, and characterised as a neurotransmitter a year later by , for which he would be awarded the Nobel Prize. A. N. Ernst then discovered in 1965 that apomorphine was a powerful stimulant of dopamine receptors. This, along with the use of sublingual apomorphine tablets, led to a renewed interest in the use of apomorphine as a treatment for alcoholism. A series of studies of non-emetic apomorphine in the treatment of alcoholism were published, with mostly positive results. However, there was little clinical consequence.


Aversion therapy
in alcoholism had its roots in Russia in the early 1930s,
(2025). 9780202362359, AldineTransaction.
with early papers by Pavlov, Galant and Sluchevsky and Friken,
(2025). 9781501703133, Cornell University Press.
and would remain a strain in the Soviet treatment of alcoholism well into the 1980s. In the US a particularly notable devotee was Dr Voegtlin, who attempted aversion therapy using apomorphine in the mid to late 1930s. However, he found apomorphine less able to induce negative feelings in his subjects than the stronger and more unpleasant emetic .

In the UK, however, the publication of J. Y. Dent's (who later went on to treat Burroughs) 1934 paper "Apomorphine in the treatment of Anxiety States" laid out the main method by which apomorphine would be used to treat alcoholism in Britain. His method in that paper is clearly influenced by the then-novel idea of aversion:However, even in 1934 he was suspicious of the idea that the treatment was pure conditioned reflex – "though vomiting is one of the ways that apomorphine relives the patient, I do not believe it to be its main therapeutic effect." – and by 1948 he wrote:This led to his development of lower-dose and non-aversive methods, which would inspire a positive trial of his method in Switzerland by Dr Harry Feldmann.


Opioid addiction
In his Deposition: Testimony Concerning a Sickness in the introduction to later editions of (first published in 1959), William S. Burroughs wrote that apomorphine treatment was the only effective cure to opioid addiction he has encountered:

Despite his claims throughout his life, Burroughs never really cured his addiction and was back to using opiates within years of his apomorphine "cure", nonetheless insisting on apomorphine's effectiveness in several works and interviews.

There is renewed interest in the use of apomorphine to treat addiction, in both smoking cessation and alcoholism. As the drug is known to be reasonably safe for use in humans, it is a viable target for repurposing.

Apomorphine has been researched as a possible treatment for erectile dysfunction and female hypoactive sexual desire disorder, though its efficacy has been limited.

(2025). 9783319525396, Springer. .

Alternative administration routes
Two routes of administration are currently clinically utilized: subcutaneous (either as intermittent injections or continuous infusion) and sublingual. Other non-invasive administration routes were investigated as a substitute for parenteral administration, reaching different preclinical and clinical stages. These include: peroral, nasal, pulmonary, transdermal, rectal, and buccal, as well as iontophoresis methods.


Veterinary use
Apomorphine is used to inducing vomiting in after ingestion of various toxins or foreign bodies. It can be given subcutaneously, intramuscularly, intravenously, or, when a tablet is crushed, in the of the eye.
(2025). 9780323444026, Elsevier Health Sciences. .
(2025). 9781455743254, Elsevier Health Sciences. .
The oral route is ineffective, as apomorphine cannot cross the blood–brain barrier fast enough, and blood levels don't reach a high enough concentration to stimulate the chemoreceptor trigger zone. It can remove around 40–60% of the contents in the stomach.
(2025). 9780470959640, Wiley.

One of the reasons apomorphine is a preferred drug is its reversibility:

(2025). 9780721606392, Elsevier Health Sciences. .
in cases of prolonged vomiting, the apomorphine can be reversed with dopamine antagonists like the (for example, ). Giving apomorphine after giving acepromazine, however, will no longer stimulate vomiting, because apomorphine's target receptors are already occupied.

Apomorphine does not work in , who have too few dopamine receptors.


Society and culture
  • Apomorphine has a vital part in 's detective story .
  • The 1965 song "Hallucination Horrors" recommends apomorphine at the end of each verse as a cure for hallucinations brought on by a humorous variety of intoxicants; the song was recorded by and appears on the album .


Related compounds
, the analog of apomorphine, has greater and a longer duration of action.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time