The ampere ( , ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 coulomb (C) moving past a point per second. It is named after France mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Denmark physicist Hans Christian Ørsted.
As of the 2019 revision of the SI, the ampere is defined by fixing the elementary charge to be exactly , which means an ampere is an electric current equivalent to elementary charges moving every seconds, or approximately elementary charges moving in a second. Prior to the redefinition, the ampere was defined as the current passing through two parallel wires 1 metre apart that produces a magnetic force of newtons per metre.
The earlier CGS system has two units of current, one structured similarly to the SI's and the other using Coulomb's law as a fundamental relationship, with the CGS unit of charge defined by measuring the force between two charged metal plates. The CGS unit of current is then defined as one unit of charge per second.
The ampere was originally defined as one tenth of the unit of electric current in the centimetre–gram–second system of units. That unit, now known as the abampere, was defined as the amount of current that generates a force of two per centimetre of length between two wires one centimetre apart. The size of the unit was chosen so that the units derived from it in the MKSA system would be conveniently sized.
The "international ampere" was an early realization of the ampere, defined as the current that would deposit of silver per second from a silver nitrate solution. Later, more accurate measurements revealed that this current is .
Since power is defined as the product of current and voltage, the ampere can alternatively be expressed in terms of the other units using the relationship , and thus 1 A = 1 W/V. Current can be measured by a multimeter, a device that can measure electrical voltage, current, and resistance.
The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed one metre apart in vacuum, would produce between these conductors a force equal to newtons per metre of length.
Ampère's force law states that there is an attractive or repulsive force between two parallel wires carrying an electric current. This force was used in the formal definition of the ampere, giving the vacuum magnetic permeability (magnetic constant, ) a value of exactly 4π × 10−7 henries per metre (H/m, equivalent to N/A2). The SI unit of charge, the coulomb, was then defined as "the quantity of electricity carried in 1 second by a current of 1 ampere". In general, charge was determined by steady current flowing for a time as .
This definition of the ampere was most accurately realised using a Kibble balance, but in practice the unit was maintained via Ohm's law from the units of electromotive force and resistance, the volt and the ohm, since the latter two could be tied to physical phenomena that are relatively easy to reproduce, the Josephson effect and the quantum Hall effect, respectively.
Techniques to establish the realisation of an ampere had a relative uncertainty of approximately a few parts in 10, and involved realisations of the watt, the ohm and the volt.
The SI unit of charge, the coulomb, "is the quantity of electricity carried in 1 second by a current of 1 ampere".. Conversely, a current of one ampere is one coulomb of charge (approximately elementary charges) going past a given point per second, or equivalently 1019 elementary charges every seconds:
Electric charge | coulomb | C | ampere second | A⋅s |
Electric potential difference | volt | V | joule per coulomb | kg⋅m2⋅s−3⋅A−1 |
Electrical resistance | ohm | Ω | volt per ampere | kg⋅m2⋅s−3⋅A−2 |
Electrical conductance | siemens | S | ampere per volt or inverse ohm | s3⋅A2⋅kg−1⋅m−2 |
Electrical inductance | henry | H | ohm second | kg⋅m2⋅s−2⋅A−2 |
Electrical capacitance | farad | F | coulomb per volt | s4⋅A2⋅kg−1⋅m−2 |
Magnetic flux | weber | Wb | volt second | kg⋅m2⋅s−2⋅A−1 |
Magnetic flux density | tesla | T | weber per square metre | kg⋅s−2⋅A−1 |
There are also some SI units that are frequently used in the context of electrical engineering and electrical appliances, but are defined independently of the ampere, notably the hertz, joule, watt, candela, lumen, and lux.
|
|