An actinometer is an instrument that can measure the heating power of radiation. Actinometers are used in meteorology to measure solar radiation as , and .
An actinometer is a chemical system or physical device which determines the number of photons in a beam integrally or per unit time. This name is commonly applied to devices used in the ultraviolet and visible wavelength ranges. For example, solutions of iron(III) oxalate can be used as a chemical actinometer, while , , and are physical devices giving a reading that can be correlated to the number of photons detected.
John Herschel further developed actinometers in the 19th century, including a design involving photochemical reactions to measure sunlight intensity, which was a significant step forward. Herschel's actinometer involved observing the rate of a chemical reaction under sunlight, which allowed for more precise quantification of solar energy. Herschel's version was influential and helped standardize measurements of solar energy. Herschel introduced the term actinometer, the first of many uses of the prefix actin for scientific instruments, effects, and processes.
The actinograph is a related device for estimating the actinic power of lighting for photography.
Uranyl oxalate has been used historically but is very toxic and cumbersome to analyze.
Recent investigations into nitrate photolysis have used 2-nitrobenzaldehyde and benzoic acid as a radical scavenger for produced in the photolysis of hydrogen peroxide and sodium nitrate. However, they originally used ferrioxalate actinometry to calibrate the quantum yields for the hydrogen peroxide photolysis. Radical scavengers proved a viable method of measuring production of hydroxyl radical.
|
|