Virophages are small, double-stranded DNA viral phages that require the Coinfection of another virus. The co-infecting viruses are typically . Virophages rely on the viral replication factory of the co-infecting giant virus for their own replication. One of the characteristics of virophages is that they have a Parasitism relationship with the co-infecting virus. Their dependence upon the giant virus for replication often results in the deactivation of the giant viruses. The virophage may improve the recovery and survival of the host organism. Virophages constitute the class Virophaviricetes.
A majority of these virophages are being discovered by analyzing Metagenomics data sets. In metagenomic analysis, DNA sequences are run through multiple bioinformatic algorithms which pull out certain important patterns and characteristics. In these data sets are giant viruses and virophages. They are separated by looking for sequences around 17 to 20 kbp long which have similarities to already sequenced virophages. These virophages can have linear or circular double-stranded DNA genomes. Known virophages in culture have icosahedral capsid particles that measure around 40 to 80 nanometers long, and virophage particles are so small that electron microscopy must be used to view them. Metagenomic sequence-based analyses have been used to predict around 57 complete and partial virophage genomes and in December 2019 to identify 328 high-quality (complete or near-complete) genomes from diverse habitats including the human gut, plant rhizosphere, and terrestrial subsurface, from 27 distinct taxonomic clades.
Virus: Poliovirus | 7 | 30 |
Virus: Adenoviridae | 26–48 | 90–100 |
Virophage: Zamilon Virophage | 17 | 50–60 |
Virophage: Sputnik Virophage | 18 | 74 |
Giant virus: Cafeteria roenbergensis virus | 700 | 75 |
Giant virus: Mimivirus | 1,181 | 400–800 |
All virophages known so far have four core genes. They are the virophage-specific major and minor (MCP and mCP), PRO (cysteine protease), and a DNA-packaging ATPase. The two capsids are almost universally found in a conserved block. The MCP has two vertical jelly roll fold domain typical of Bamfordvirae, while the mCP (penton) has a regular jelly roll fold domain.
Additionally, virophage genomes identified from metagenomes have been classified together with the isolate virophages into 27 distinct clades with consistent genome length, gene content, and habitat distribution. Some fragmentary virophage sequences were additionally reported in a Loki's Castle metagenome. PDF
Taxonomy
See also
|
|