In musical tuning and harmony, the Tonnetz (German for 'tone net') is a conceptual lattice diagram representing modulatory space first described by Leonhard Euler in 1739. Various visual representations of the Tonnetz can be used to show Tonality in European classical music.
Oettingen and Riemann both conceived of the relationships in the chart being defined through just intonation, which uses pure intervals. One can extend out one of the horizontal rows of the Tonnetz indefinitely, to form a never-ending sequence of perfect fifths: F-C-G-D-A-E-B-F♯-C♯-G♯-D♯-A♯-E♯-B♯-F𝄪-C𝄪-G𝄪- (etc.) Starting with F, after 12 perfect fifths, one reaches E♯. Perfect fifths in just intonation are slightly larger than the compromised fifths used in equal temperament tuning systems more common in the present. This means that when one stacks 12 fifths starting from F, the E♯ we arrive at will not be seven octaves above the F we started with. Oettingen and Riemann's Tonnetz thus extended on infinitely in every direction without actually repeating any pitches. In the twentieth century, composer-theorists such as Ben Johnston and James Tenney continued to develop theories and applications involving just-intoned Tonnetze.
The appeal of the Tonnetz to 19th-century German theorists was that it allows spatial representations of tonal distance and tonal relationships. For example, looking at the dark blue A minor triad in the graphic at the beginning of the article, its parallel major triad (A-C♯-E) is the triangle right below, sharing the vertices A and E. The relative major of A minor, C major (C-E-G) is the upper-right adjacent triangle, sharing the C and the E vertices. The dominant triad of A minor, E major (E-G♯-B) is diagonally across the E vertex, and shares no other vertices. One important point is that every shared vertex between a pair of triangles is a shared pitch between chords - the more shared vertices, the more shared pitches the chord will have. This provides a visualization of the principle of parsimonious voice-leading, in which motions between chords are considered smoother when fewer pitches change. This principle is especially important in analyzing the music of late-19th century composers like Richard Wagner, who frequently avoided traditional tonal relationships.
Neo-Riemannian theorists have also used the Tonnetz to visualize non-tonal triadic relationships. For example, the diagonal going up and to the left from C in the diagram at the beginning of the article forms a division of the octave in three : C-A♭-E-C (the E is actually an F♭, and the final C a D♭♭). Richard Cohn argues that while a sequence of triads built on these three pitches (C major, A♭ major, and E major) cannot be adequately described using traditional concepts of functional harmony, this cycle has smooth voice leading and other important group properties which can be easily observed on the Tonnetz.
The Tonnetz can be overlaid on the Wicki–Hayden note layout, where the major second can be found halfway towards the major third.
The Tonnetz is the dual graph of Schoenberg's chart of the regions, and of course vice versa. Research into music cognition has demonstrated that the human brain uses a "chart of the regions" to process tonal relationships.
|
|