Tacheometry (; from Greek for "quick measure") is a system of rapid surveying, by which the horizontal and vertical positions of points on the Earth's surface relative to one another are determined using a tacheometer (a form of theodolite). It is used without a chain or Measuring tape for distance measurement and without a separate levelling instrument for relative height measurements.
Instead of the surveying pole normally employed to mark a point, a staff similar to a level staff is used in tacheometry. This is marked with heights from the base or foot, and is graduated according to the form of tacheometer in use.
The ordinary methods of surveying with a theodolite, chain, and levelling instrument are fairly satisfactory when the ground is relatively clear of obstructions and not very precipitous, but it becomes extremely cumbersome when the ground is covered with Shrub, or broken up by . Chain measurements then become slow and liable to considerable error; the levelling, too, is carried on at great disadvantage in point of speed, though without serious loss of accuracy. These difficulties led to the introduction of tacheometry.
In western countries, tacheometry is primarily of historical interest in surveying, as professional measurement nowadays is usually carried out using and recorded using data collectors. Location positions are also determined using GNSS. Traditional methods and instruments are still in use in many areas of the world and by users who are not primarily surveyors.
The azimuth angle is determined as normally. Thus, all the measurements requisite to locate a point both vertically and horizontally with reference to the point where the tacheometer is centred are determined by an observer at the instrument without any assistance beyond that of a person to hold the level staff.
The formula most widely used for finding the distances is:
Here, is the stadia interval (top intercept minus bottom intercept); and are multiplicative and additive constants. Generally, the instrument is made so that and exactly, to simplify calculations.
A theodolite is used to measure the horizontal angle between indicators on the two ends of the subtense bar. The distance from the telescope to the subtense bar is the height of an isosceles triangle formed with the theodolite at the upper vertex and the subtense bar length at its base, determined by trigonometry.
|
|