In biology, a kingdom is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called Phylum (singular phylum).
Traditionally, textbooks from Canada and the United States have used a system of six kingdoms (, , Fungus, , Archaea/Archaebacteria, and Bacteria or Eubacteria), while textbooks in other parts of the world, such as Bangladesh, Brazil, Greece, India, Pakistan, Spain, and the United Kingdom have used five kingdoms (Animalia, Plantae, Fungi, Protista and Monera).
Some recent classifications based on modern cladistics have explicitly abandoned the term kingdom, noting that some traditional kingdoms are not Monophyly, meaning that they do not consist of all the descendants of a common ancestor. The terms flora (for plants), fauna (for animals), and, in the 21st century, funga (for fungi) are also used for life present in a particular region or time.
Prefixes can be added so subkingdom ( subregnum) and infrakingdom (also known as infraregnum) are the two ranks immediately below kingdom. Superkingdom may be considered as an equivalent of domain or empire or as an independent rank between kingdom and domain or subdomain. In some classification systems the additional rank branch (Latin: ramus) can be inserted between subkingdom and infrakingdom, e.g., Protostomia and Deuterostomia in the classification of Cavalier-Smith.
Carl Linnaeus (1707–1778) laid the foundations for modern biological nomenclature, now regulated by the Nomenclature Codes, in 1735. He distinguished two kingdoms of living things: Regnum Animale ('animal kingdom') and Regnum Vegetabile ('vegetable kingdom', for ). Linnaeus also included in his classification system, placing them in a third kingdom, Mineralia.
At first, microscopic organisms were classified within the animal and plant kingdoms. However, by the mid–19th century, it had become clear to many that "the existing dichotomy of the plant and animal kingdoms had rapidly blurred at its boundaries and outmoded".
In 1860 John Hogg proposed the Protoctista, a third kingdom of life composed of "all the lower creatures, or the primary organic beings"; he retained Regnum Lapideum as a fourth kingdom of minerals. In 1866, Ernst Haeckel also proposed a third kingdom of life, the Protista, for "neutral organisms" or "the kingdom of primitive forms", which were neither animal nor plant; he did not include the Regnum Lapideum in his scheme. Haeckel revised the content of this kingdom a number of times before settling on a division based on whether organisms were unicellular (Protista) or multicellular (animals and plants).
In 1938, Herbert F. Copeland proposed a four-kingdom classification by creating the novel Kingdom Monera of prokaryotic organisms; as a revised phylum Monera of the Protista, it included organisms now classified as Bacteria and Archaea. Ernst Haeckel, in his 1904 book The Wonders of Life, had placed the blue-green algae (or Phycochromacea) in Monera; this would gradually gain acceptance, and the blue-green algae would become classified as bacteria in the phylum Cyanobacteria.
In the 1960s, Roger Stanier and C. B. van Niel promoted and popularized Édouard Chatton's earlier work, particularly in their paper of 1962, "The Concept of a Bacterium"; this created, for the first time, a rank above kingdom—a superkingdom or empire—with the two-empire system of prokaryotes and eukaryotes. The two-empire system would later be expanded to the three-domain system of Archaea, Bacteria, and Eukaryota.
The remaining two kingdoms, Protista and Monera, included unicellular and simple cellular colonies. The five kingdom system may be combined with the two empire system. In the Whittaker system, Plantae included some algae. In other systems, such as Lynn Margulis's system of five kingdoms, the plants included just the land plants (Embryophyte), and Protoctista has a broader definition.
Following publication of Whittaker's system, the five-kingdom model began to be commonly used in high school biology textbooks. But despite the development from two kingdoms to five among most scientists, some authors as late as 1975 continued to employ a traditional two-kingdom system of animals and plants, dividing the plant kingdom into subkingdoms Prokaryota (bacteria and cyanobacteria), Mycota (fungi and supposed relatives), and Chlorota (algae and land plants).
Finally, some protists lacking mitochondria were discovered. As mitochondria were known to be the result of the endosymbiosis of a proteobacterium, it was thought that these amitochondriate eukaryotes were primitively so, marking an important step in eukaryogenesis. As a result, these amitochondriate protists were separated from the protist kingdom, giving rise to the, at the same time, superkingdom and kingdom Archezoa. This superkingdom was opposed to the Metakaryota superkingdom, grouping together the five other eukaryotic kingdoms (Animalia, Protozoa, Fungi, Plantae and Chromista). This was known as the Archezoa hypothesis, which has since been abandoned; later schemes did not include the Archezoa–Metakaryota divide.
‡ No longer recognized by taxonomists.
Cavalier-Smith does not accept the requirement for taxa to be Monophyly ("holophyletic" in his terminology) to be valid. He defines Prokaryota, Bacteria, Negibacteria, Unibacteria, and Posibacteria as valid Paraphyly (therefore "monophyletic" in the sense he uses this term) taxa, marking important innovations of biological significance (in regard of the concept of biological Ecological niche).
In the same way, his paraphyletic kingdom Protozoa includes the ancestors of Animalia, Fungi, Plantae, and Chromista. The advances of phylogenetic studies allowed Cavalier-Smith to realize that all the phyla thought to be (i.e. primitively amitochondriate eukaryotes) had in fact secondarily lost their mitochondria, typically by transforming them into new organelles: . This means that all living eukaryotes are in fact , according to the significance of the term given by Cavalier-Smith. Some of the members of the defunct kingdom Archezoa, like the phylum Microsporidia, were reclassified into kingdom Fungi. Others were reclassified in kingdom Protozoa, like Metamonada which is now part of infrakingdom Excavata.
Because Cavalier-Smith allows paraphyly, the diagram below is an "organization chart", not an "ancestor chart", and does not represent an evolutionary tree.
In 1990, the name "domain" was proposed for the highest rank. This term represents a synonym for the category of dominion (lat. dominium), introduced by Moore in 1974. Unlike Moore, Woese et al. (1990) did not suggest a Latin term for this category, which represents a further argument supporting the accurately introduced term dominion.
Woese divided the prokaryotes (previously classified as the Kingdom Monera) into two groups, called bacteria and Archaea, stressing that there was as much genetic difference between these two groups as between either of them and all eukaryotes.
According to genetic data, although eukaryote groups such as plants, fungi, and animals may look different, they are more closely related to each other than they are to either the Eubacteria or Archaea. It was also found that the eukaryotes are more closely related to the Archaea than they are to the Eubacteria. Although the primacy of the Eubacteria-Archaea divide has been questioned, it has been upheld by subsequent research. There is no consensus on how many kingdoms exist in the classification scheme proposed by Woese.
On this basis, the diagram opposite (redrawn from their article) showed the real "kingdoms" (their quotation marks) of the eukaryotes. A classification which followed this approach was produced in 2005 for the International Society of Protistologists, by a committee which "worked in collaboration with specialists from many societies". It divided the eukaryotes into the same six "supergroups". The published classification deliberately did not use formal taxonomic ranks, including that of "kingdom".
this system the multicellular animals (Metazoa) are descended from the same ancestor as both the unicellular and the fungi which form the Opisthokonta. Plants are thought to be more distantly related to animals and fungi.
However, in the same year as the International Society of Protistologists' classification was published (2005), doubts were being expressed as to whether some of these supergroups were monophyletic, particularly the Chromalveolata, and a review in 2006 noted the lack of evidence for several of the six proposed supergroups.
, there is widespread agreement that the Rhizaria belong with the Stramenopiles and the Alveolata, in a clade dubbed the SAR supergroup, so that Rhizaria is not one of the main eukaryote groups.
The eocyte hypothesis proposes that the emerged from a phylum within the archaea called the Thermoproteota (formerly known as eocytes or Crenarchaeota).
There is ongoing debate as to whether viruses can be included in the tree of life. The arguments against include the fact that they are obligate intracellular parasites that lack metabolism and are not capable of Self-replication outside of a host cell. Another argument is that their placement in the tree would be problematic, since it is suspected that viruses have various evolutionary origins, and they have a penchant for harvesting nucleotide sequences from their hosts.
Four kingdoms
Five kingdoms
+ Kingdom Monera
|
Kingdom Protista
|Kingdom Plantae
|
Kingdom Fungi
|
Kingdom Animalia
Six kingdoms
Eight kingdoms
Six kingdoms (1998)
+ Cavalier-Smith's six kingdom system (1998)
|
|
|
|
|
Seven kingdoms
Summary
Beyond traditional kingdoms
Three domains of life
Eukaryotic supergroups
Prokaryotic kingdoms
Comparison of top level classification
/ref>
Viruses
See also
Notes
Further reading
External links
|
|