Product Code Database
Example Keywords: handheld -sweater $84-111
barcode-scavenger
   » » Wiki: Sphericity
Tag Wiki 'Sphericity'.
Tag

Sphericity is a measure of how closely the shape of a resembles that of a perfect . For example, the sphericity of the balls inside a determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape.

Sphericity applies in three dimensions; its analogue in two dimensions, such as the cross sectional circles along a object such as a shaft, is called roundness.


Definition
Defined by Wadell in 1935, the sphericity, \Psi , of an object is the ratio of the of a sphere with the same volume to the object's surface area:

\Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}

where V_p is volume of the object and A_p is the surface area. The sphericity of a sphere is unity by definition and, by the isoperimetric inequality, any shape which is not a sphere will have sphericity less than 1.


Ellipsoidal objects
The sphericity, \Psi , of an (similar to the shape of the planet ) is:

\Psi =
\frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p} = \frac{2\sqrt3{ab^2}}{a+\frac{b^2}{\sqrt{a^2-b^2}}\ln{\left(\frac{a+\sqrt{a^2-b^2}}b\right)}},

where a and b are the and axes respectively.


Derivation
Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the object divided by the actual surface area of the object.

First we need to write surface area of the sphere, A_s in terms of the volume of the object being measured, V_p

A_{s}^3 = \left(4 \pi r^2\right)^3 = 4^3 \pi^3 r^6 = 4 \pi \left(4^2 \pi^2 r^6\right) = 4 \pi \cdot 3^2 \left(\frac{4^2 \pi^2}{3^2} r^6\right) = 36 \pi \left(\frac{4 \pi}{3} r^3\right)^2 = 36\,\pi V_{p}^2

therefore

A_{s} = \left(36\,\pi V_{p}^2\right)^{\frac{1}{3}} = 36^{\frac{1}{3}} \pi^{\frac{1}{3}} V_{p}^{\frac{2}{3}} = 6^{\frac{2}{3}} \pi^{\frac{1}{3}} V_{p}^{\frac{2}{3}} = \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}}

hence we define \Psi as:


Sphericity of common objects
\frac{4\pi}{3}\,r^34\pi\,r^21
Disdyakis triacontahedron \frac{900+720\sqrt{5}}{11}\,s^3\frac{180\sqrt{179-24\sqrt{5}}}{11}\,s^2\frac{\left(\left(5+4\sqrt{5}\right)^{2}\frac{11\pi}{5}\right)^{\frac{1}{3}}}{\sqrt{179-24\sqrt{5}}}\approx0.9857
16-8\sqrt{2}\,r^348-24\sqrt{2}\,r^2\frac{\sqrt3{36\pi+18\pi\sqrt{2}}}{6}\approx0.9633
Rhombic triacontahedron 4\sqrt{5+2\sqrt{5}}\,s^312\sqrt{5}\,s^2\frac{\sqrt6{455625\pi^{2}+202500\pi^{2}\sqrt{5}}}{15}\approx0.9609
Icosahedron \frac{15+5\sqrt{5}}{12}\,s^35\sqrt{3}\,s^2\frac{\sqrt3{2100\pi\sqrt{3}+900\pi\sqrt{15}}}{30}\approx0.9393
\frac{16}{3}\,r^316\,r^2\frac{\sqrt3{2\pi}}{2}\approx0.9226
Ideal
(h=r\sqrt{2})
\frac{2\pi}{3}\,r^{2}h=\frac{2\pi\sqrt{2}}{3}\,r^32\pi\,r\sqrt{r^{2}+h^{2}}=2\pi\sqrt{3}\,r^2\frac{\sqrt6{432}}{3}\approx0.9165
Dodecahedron \frac{15+\sqrt{5}}{4}\,s^33\sqrt{25+10\sqrt{5}}\, s^2\left(\frac{\left(15 + 7\sqrt{5}\right)^2 \pi}{12\left(25+10\sqrt{5}\right)^{\frac{3}{2}}}\right)^{\frac{1}{3}}\approx0.9105
Rhombic dodecahedron \frac{16\sqrt{3}}{9}\,s^38\sqrt{2}\,s^2\frac{\sqrt6{2592\pi^2}}{6}\approx0.9047
Ideal
(R=r)
2\pi^2Rr^2=2\pi^2\,r^34\pi^2Rr=4\pi^2\,r^2\frac{\sqrt3{18\pi^2}}{2\pi}\approx0.8947
Ideal
(h=2r)
\pi\,r^2h=2\pi\,r^32\pi\,r(r+h)=6\pi\,r^2\frac{\sqrt3{18}}{3}\approx0.8736
\frac{\sqrt{2}}{3}\,s^32\sqrt{3}\,s^2\frac{\sqrt3{3\pi\sqrt{3}}}{3}\approx0.8456
Hemisphere \frac{2\pi}{3}\,r^33\pi\,r^2\frac{2\sqrt3{2}}{3}\approx0.8399
\,s^36\,s^2\frac{\sqrt3{36\pi}}{6}\approx0.8060
Ideal
(h=2r\sqrt{2})
\frac{\pi}{3}\,r^2h=\frac{2\pi\sqrt{2}}{3}\,r^3\pi\,r(r+\sqrt{r^2+h^2})=4\pi\,r^2\frac{\sqrt3{4}}{2}\approx0.7937
\frac{\sqrt{2}}{12}\,s^3\sqrt{3}\,s^2\frac{\sqrt3{12\pi\sqrt{3}}}{6}\approx0.6711


See also


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
3s Time