Sodalite ( ) is a tectosilicate mineral with the formula , with royal blue varieties widely used as an gemstone. Although massive sodalite samples are opaque, crystals are usually transparent to translucent. Sodalite is a member of the sodalite group with hauyne, nosean, lazurite and tugtupite.
The people of the Caral culture traded for sodalite from the altiplano. First discovered by Europeans in 1811 in the Ilimaussaq intrusive complex in Greenland, sodalite did not become widely important as an ornamental stone until 1891 when vast deposits of fine material were discovered in Ontario, Canada.
The structure is a crumpled form of a structure in which the three-fold axes of each tetrahedron lie in planes parallel to the faces of the unit cell, thus putting half the oxygen atoms in the faces. As the temperature is raised the sodalite structure expands and uncrumples, becoming more like this structure. In this structure the two cavities are still chiral, because no indirect isometry centred on the cavity (i.e. a reflexion, inversion, or improper rotation) can superimpose the silicon atoms onto silicon atoms and the aluminum atoms onto aluminum atoms, while also superimposing the sodium atoms on other sodium atoms. A discontinuity of the thermal expansion coefficient occurs at a certain temperature when chloride is replaced by sulfate or iodide, and this is thought to happen when the framework becomes fully expanded or when the cation (sodium in natural sodalite) reaches the coordinates (et cetera). This adds symmetry (such as mirror planes in the faces of the unit cell) so that the space group becomes Pmn (space group 223), and the cavities cease to be chiral and take on pyritohedral symmetry. Natural sodalite holds primarily chloride anions in the cages, but they can be substituted by other anions such as sulfate, sulfide, hydroxide, trisulfur with other minerals in the sodalite group representing end member compositions. The sodium can be replaced by other alkali group elements, and the chloride by other . Many of these have been synthesized.
The characteristic blue color arises mainly from caged and clusters.
Although somewhat similar to lazurite and lapis lazuli, sodalite rarely contains pyrite (a common inclusion in lapis) and its blue color is more like traditional royal blue rather than ultramarine. It is further distinguished from similar minerals by its white (rather than blue) streak. Sodalite's six directions of poor cleavage may be seen as incipient cracks running through the stone.
Most sodalite will fluoresce orange under ultraviolet light, and hackmanite exhibits tenebrescence.
Occurring typically in massive form, sodalite is found as vein fillings in plutonic such as nepheline syenites. It is associated with other minerals typical of silica-undersaturated environments, namely leucite, cancrinite and natrolite. Other associated minerals include nepheline, titanian andradite, aegirine, microcline, sanidine, albite, calcite, fluorite, ankerite and baryte.
Significant deposits of fine material are restricted to but a few locales: Bancroft, Ontario (Princess Sodalite Mine), and Mont-Saint-Hilaire, Quebec, in Canada; and Litchfield, Maine, and Magnet Cove, Arkansas, in the US. The Ice River complex, near Golden, British Columbia, contains sodalite. Ice River deposit on Mindat Smaller deposits are found in South America (Brazil and Bolivia), Portugal, Romania, Burma and Russia. Hackmanite is found principally in Mont-Saint-Hilaire and Greenland.
Euhedral, transparent crystals are found in northern Namibia and in the of Vesuvius, Italy.
Sodalitite is a type of extrusive igneous rock rich in sodalite.
History
Synthesis
See also
External links
|
|