In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theory. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier.
In quantum field theory, S-duality generalizes a well established fact from classical electrodynamics, namely the invariance of Maxwell's equations under the interchange of electric field and . One of the earliest known examples of S-duality in quantum field theory is Montonen–Olive duality which relates two versions of a quantum field theory called N = 4 supersymmetric Yang–Mills theory. Recent work of Anton Kapustin and Edward Witten suggests that Montonen–Olive duality is closely related to a research program in mathematics called the geometric Langlands program. Another realization of S-duality in quantum field theory is Seiberg duality, which relates two versions of a theory called N=1 supersymmetric Yang–Mills theory.
There are also many examples of S-duality in string theory. The existence of these string duality implies that seemingly different formulations of string theory are actually physically equivalent. This led to the realization, in the mid-1990s, that all of the five consistent superstring theories are just different limiting cases of a single eleven-dimensional theory called M-theory.
To compute observable quantities in quantum field theory or string theory, physicists typically apply the methods of perturbation theory. In perturbation theory, quantities called probability amplitudes, which determine the probability for various physical processes to occur, are expressed as infinite series, where each term is proportional to a exponent of the coupling constant :
In order for such an expression to make sense, the coupling constant must be less than 1 so that the higher powers of become negligibly small and the sum is finite. If the coupling constant is not less than 1, then the terms of this sum will grow larger and larger, and the expression gives a meaningless infinite answer. In this case the theory is said to be strongly coupled, and one cannot use perturbation theory to make predictions.
For certain theories, S-duality provides a way of doing computations at strong coupling by translating these computations into different computations in a weakly coupled theory. S-duality is a particular example of a general notion of String duality in physics. The term duality refers to a situation where two seemingly different turn out to be equivalent in a nontrivial way. If two theories are related by a duality, it means that one theory can be transformed in some way so that it ends up looking just like the other theory. The two theories are then said to be dual to one another under the transformation. Put differently, the two theories are mathematically different descriptions of the same phenomena.
S-duality is useful because it relates a theory with coupling constant to an equivalent theory with coupling constant . Thus it relates a strongly coupled theory (where the coupling constant is much greater than 1) to a weakly coupled theory (where the coupling constant is much less than 1 and computations are possible). For this reason, S-duality is called a strong-weak duality.
Here is a Euclidean vector (or more precisely a vector field whose magnitude and direction may vary from point to point in space) representing the electric field, is a vector representing the magnetic field, is time, and is the speed of light. The other symbols in these equations refer to the divergence and curl, which are concepts from vector calculus.
An important property of these equations is their invariance under the transformation that simultaneously replaces the electric field by the magnetic field and replaces by :
In other words, given a pair of electric and magnetic fields that vacuum solution Maxwell's equations, it is possible to describe a new physical setup in which these electric and magnetic fields are essentially interchanged, and the new fields will again give a solution of Maxwell's equations. This situation is the most basic manifestation of S-duality in a field theory.
It is natural to ask whether there is an analog in gauge theory of the symmetry interchanging the electric and magnetic fields in Maxwell's equations. The answer was given in the late 1970s by Claus Montonen and David Olive, building on earlier work of Peter Goddard, Jean Nuyts, and Olive. Their work provides an example of S-duality now known as Montonen–Olive duality. Montonen–Olive duality applies to a very special type of gauge theory called N = 4 supersymmetric Yang–Mills theory, and it says that two such theories may be equivalent in a certain precise sense. If one of the theories has a gauge group , then the dual theory has gauge group where denotes the Langlands dual group which is in general different from .
An important quantity in quantum field theory is complexified coupling constant. This is a complex number defined by the formula
where is the theta vacuum, a quantity appearing in the Lagrangian that defines the theory, and is the coupling constant. For example, in the Yang–Mills theory that describes the electromagnetic field, this number is simply the elementary charge carried by a single proton. In addition to exchanging the gauge groups of the two theories, Montonen–Olive duality transforms a theory with complexified coupling constant to a theory with complexified constant .
In spite of its importance in number theory, establishing the Langlands correspondence in the number theoretic context has proved extremely difficult. As a result, some mathematicians have worked on a related conjecture known as the geometric Langlands correspondence. This is a geometric reformulation of the classical Langlands correspondence which is obtained by replacing the number fields appearing in the original version by function fields and applying techniques from algebraic geometry.
In a paper from 2007, Anton Kapustin and Edward Witten suggested that the geometric Langlands correspondence can be viewed as a mathematical statement of Montonen–Olive duality. Starting with two Yang–Mills theories related by S-duality, Kapustin and Witten showed that one can construct a pair of quantum field theories in two-dimensional spacetime. By analyzing what this dimensional reduction does to certain physical objects called D-branes, they showed that one can recover the mathematical ingredients of the geometric Langlands correspondence. Their work shows that the Langlands correspondence is closely related to S-duality in quantum field theory, with possible applications in both subjects.
In the mid 1990s, physicists noticed that these five string theories are actually related by highly nontrivial dualities. One of these dualities is S-duality. The term S-duality introduced by Anamaría Font, Luis E. Ibáñez, Dieter Lüst and Fernando Quevedo in 1990. It was shown that type IIB string theory with the coupling constant is equivalent via S-duality to the same string theory with the coupling constant . Similarly, type I string theory with the coupling is equivalent to the SO(32) heterotic string theory with the coupling constant .
The existence of these dualities showed that the five string theories were in fact not all distinct theories. In 1995, at the string theory conference at University of Southern California, Edward Witten made the surprising suggestion that all five of these theories were just different limits of a single theory now known as M-theory.Witten 1995 Witten's proposal was based on the observation that type IIA and E8×E8 heterotic string theories are closely related to a gravitational theory called eleven-dimensional supergravity. His announcement led to a flurry of work now known as the second superstring revolution.
|
|