The Polyporales are an order of about 1,800 species of fungi in the division Basidiomycota. The order includes some (but not all) polypores as well as many corticioid fungi and a few (mainly in the genus Lentinus). Many species within the order are saprotrophic, most of them wood-rotters. Some genera, such as Ganoderma and Fomes, contain species that attack living tissues and then continue to degrade the wood of their dead hosts. Those of economic importance include several important plant pathology of trees and a few species that cause damage by rotting structural timber. Some of the Polyporales are commercially Fungiculture and marketed for use as food items or in traditional Chinese medicine.
In a series of publications in 1932, E. J. H. Corner explained the occurrence of different types of in the fruit bodies of polypore fungi. He introduced the concept of hyphal analysis, which later become a fundamental phenotypic trait in polypore taxonomy.
The order Polyporales was not widely adopted by Gäumann's contemporaries; most mycologists and reference works preferring to use the catch-all, artificial order Aphyllophorales for polypores and other "non-gilled fungi". When an attempt was made to introduce a more natural, morphology-based classification of the fungi in the 1980s and 1990s, the order was still overlooked. A standard 1995 reference work placed most polypores and corticioid fungi in the Ganodermatales, Poriales, and Stereales.
In an extensive molecular analysis, Manfred Binder and colleagues analyzed 6 from 373 species and confirmed the existence of four previously recognized lineages of Polyporales: the antrodia, core polyporoid, phlebioid, and residual polyporoid clades. Extending this work, Alfredo Justo and colleagues proposed a phylogenetic overview of the Polyporales that included a new family-level classification. They assigned family names to 18 clades and four informal unranked clades. The families are listed below, followed by their taxonomic authorities and year of publication:
Other families that putatively belong to the Polyporales, but for which molecular confirmation is absent or lacking, include Diachanthodaceae Jülich, (1981); Fragiliporiaceae Y.C.Dai, B.K.Cui & C.L.Zhao (2015); Hymenogrammaceae Jülich (1981); and Phaeotrametaceae Popoff ex Piątek (2005). The Nigrofomitaceae, formerly placed in the Polyporales, was shown to be nested as a distinct lineage within the Hymenochaetales.
The family Steccherinaceae was redefined in 2012 to contain most species of the poroid and hydnoid fungus genera Antrodiella, Junghuhnia, and Steccherinum, as well as members of 12 other hydnoid and poroid genera that had been traditionally classified in the families Phanerochaetaceae, Polyporaceae, and Meruliaceae. Several new genera were added to the Steccherinaceae in 2016–17.
Wood-decay Polyporales reduce the volume of dead wood in the forest and are an important component of the carbon cycle. Wood is composed of primarily three types of tissue: lignin, cellulose, and . White rot species of Polyporales are efficient degraders of the decay-resistant polymer lignin, leaving partially degraded cellulose as a residue. Brown rot species break down the cellulose fibres, leaving a brittle, brown lignin residue. Brown-rot residues such as humus can remain in the soil for hundreds of years, increasing aeration and water-holding capacity.
Peroxidase enzymes that degrade lignin, such as lignin peroxidase, manganese peroxidase, or versatile peroxidase, are present in all white-rot members of the Polyporales, but absent in brown-rot species. Oxidase enzymes, including members of the glucose-methanol-choline oxidoreductase family, play a key role in the breakdown of plant polymers because they generate hydrogen peroxide, which acts as the ultimate oxidizer in both white-rot and brown-rot decay.
Two species of Polyporales, Daedalea quercina and Fomitopsis pinicola, use paralysing toxins to destroy and colonize that feed on their fruit bodies.
Several of the Polyporales, notably Ganoderma lucidum (ling-zhi), Grifola frondosa (maitake), Taiwanofungus camphoratus (niú zhāng zhī), Lignosus rhinocerotis, and Trametes versicolor (yun-zhi), are commercially cultivated and marketed for use in traditional Chinese medicine. The polypores Laetiporus sulphureus, Fomes fomentarius, Fomitopsis pinicola, Fomitopsis betulina, and Laricifomes officinalis have been widely used in central European folk medicine for the treatment of various diseases.
Some species, including several members of the genera Laetiporus and Sparassis, are used as food. Blackfellow's bread, or Laccocephalum mylittae, is an edible mushroom that is prized by Aboriginal Australians. Lentinus squarrosulus is collected and eaten in Asian and African communities.
Fomitopsis betulina was formerly used in the manufacture of charcoal crayons. Amadou, a spongy material derived from the fruit bodies of Fomes fomentarius, has been used since ancient times as a tinder. More recently, it has been used by dentists as a styptic, or as a felt-like material for making hats and other items. The anise-scented fruit bodies of Haploporus odorus were used by some tribes of Plains Indians as a component of sacred objects. Laricifomes officinalis was used by nineteenth century Pacific northwest for carving spirit figures. Some species, including dyer's polypore ( Phaeolus schweinitzii) and purple dye polypore ( Hapalopilus nidulans) are used in .
Molecular clock techniques have been used to estimate the age of the Polyporales, suggesting that the order evolved either during the late Jurassic, about 203–250 Ma, or, in more recent study, about 114 Ma.
|
|