Polycarbonates ( PC) are a group of thermoplastic polymers containing carbonate ester in their chemical structures. Polycarbonates used in engineering are strong, toughness materials, and some grades are optically transparent. They are easily worked, molded, and thermoforming. Because of these properties, polycarbonates find many applications. Polycarbonates do not have a unique resin identification code (RIC) and are identified as "Other", 7 on the RIC list. Products made from polycarbonate can contain the precursor monomer bisphenol A (BPA).
The first step of the synthesis involves treatment of bisphenol A with sodium hydroxide, which deprotonates the of the bisphenol A.Volker Serini "Polycarbonates" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
The diphenoxide (Na2(OC6H4)2CMe2) reacts with phosgene to give a chloroformate, which subsequently is attacked by another phenoxide. The net reaction from the diphenoxide is:
In this way, approximately one billion kilograms of polycarbonate is produced annually. Many other have been tested in place of bisphenol A, e.g. 1,1-bis(4-hydroxyphenyl)cyclohexane and dihydroxybenzophenone. The cyclohexane is used as a comonomer to suppress crystallisation tendency of the BPA-derived product. Tetrabromobisphenol A is used to enhance fire resistance. Tetramethylcyclobutanediol has been developed as a replacement for BPA.
Polycarbonate has a glass transition temperature of about , Answers to Common Questions about Bayer Polycarbonate Resins. bayermaterialsciencenafta.com so it softens gradually above this point and flows above about . Tools must be held at high temperatures, generally above to make strain-free and stress-free products. Low molecular mass grades are easier to mold than higher grades, but their strength is lower as a result. The toughest grades have the highest molecular mass, but are more difficult to process.
Unlike most thermoplastics, polycarbonate can undergo large plastic deformations without cracking or breaking. As a result, it can be processed and formed at room temperature using sheet metal techniques, such as bending on a brake. Even for sharp angle bends with a tight radius, heating may not be necessary. This makes it valuable in prototyping applications where transparent or electrically non-conductive parts are needed, which cannot be made from sheet metal. PMMA/Acrylic, which is similar in appearance to polycarbonate, is brittle and cannot be bent at room temperature.
Main transformation techniques for polycarbonate resins:
Polycarbonate may become Brittleness when exposed to ionizing radiation above
So-called "theft-proof" large plastic packaging for smaller items, which cannot be opened by hand, is typically made from polycarbonate.
The cockpit canopy of the Lockheed Martin F-22 Raptor jet fighter is fabricated from high optical quality polycarbonate. It is the largest item of its type. Egress technicians keep raptor pilots covered. Pacaf.af.mil. Retrieved on 2011-02-26.
Polycarbonate is commonly used in eye protection, as well as in other projectile-resistant viewing and lighting applications that would normally indicate the use of glass, but require much higher impact-resistance. Polycarbonate lenses also protect the eye from UV light. Many kinds of lenses are manufactured from polycarbonate, including automotive headlamp lenses, lighting lenses, sunglass/eyeglass Corrective lens, camera lenses, swimming goggles and SCUBA masks, and safety glasses/goggles/visors including visors in sporting helmets/masks and police riot gear (helmet visors, riot shields, etc.). Windscreens in small motorized vehicles are commonly made of polycarbonate, such as for motorcycles, ATVs, golf carts, and small airplanes and helicopters.
The light weight of polycarbonate as opposed to glass has led to development of electronic display screens that replace glass with polycarbonate, for use in mobile and portable devices. Such displays include newer e-ink and some LCD screens, though CRT, plasma screen and other LCD technologies generally still require glass for its higher melting temperature and its ability to be etched in finer detail.
As more and more governments are restricting the use of glass in pubs and clubs due to the increased incidence of , polycarbonate glasses are becoming popular for serving alcohol because of their strength, durability, and glass-like feel. Alcohol restrictions for violent venues. State of New South Wales (Office of Liquor, Gaming & Racing) Ban on regular glass in licensed premises. The State of Queensland (Department of Justice and Attorney-General)
Other miscellaneous items include durable, lightweight luggage, MP3/digital audio player cases, , computer cases, riot shields, instrument panels, tealight candle containers and food blender jars. Many toys and hobby items are made from polycarbonate parts, like fins, gyro mounts, and flybar locks in radio-controlled helicopters, and transparent LEGO (ABS is used for opaque pieces).
Standard polycarbonate resins are not suitable for long term exposure to UV radiation. To overcome this, the primary resin can have UV stabilisers added. These grades are sold as UV stabilized polycarbonate to injection moulding and extrusion companies. Other applications, including polycarbonate sheets, may have the anti-UV layer added as a special coating or a coextrusion for enhanced weathering resistance.
Polycarbonate is also used as a printing substrate for nameplate and other forms of industrial grade under printed products. The polycarbonate provides a barrier to wear, the elements, and fading.
Benefits over glass and metal back covers include durability against shattering (advantage over glass), bending and scratching (advantage over metal), shock absorption, low manufacturing costs, and no interference with radio signals and wireless charging (advantage over metal).
Also in 1953, and one week after the invention at Bayer, Daniel Fox at General Electric (GE) in Pittsfield, Massachusetts, independently synthesized a branched polycarbonate. Both companies filed for U.S. patents in 1955, and agreed that the company lacking priority would be granted a license to the technology.
Patent priority was resolved in Bayer's favor, and Bayer began commercial production under the trade name Makrolon in 1958. GE began production under the name Lexan in 1960, creating the GE Plastics division in 1973.
After 1970, the original brownish polycarbonate tint was improved to "glass-clear". PC on the bottom of a 5 gallon water jug made by Greif, Inc.]]
More than 100 studies have explored the bioactivity of bisphenol A derived from polycarbonates. Bisphenol A appeared to be released from polycarbonate animal cages into water at room temperature and it may have been responsible for enlargement of the reproductive organs of female mice. However, the animal cages used in the research were fabricated from industrial grade polycarbonate, rather than FDA food grade polycarbonate.
An analysis of the literature on bisphenol A leachate low-dose effects by vom Saal and Hughes published in August 2005 seems to have found a suggestive correlation between the source of funding and the conclusion drawn. Industry-funded studies tend to find no significant effects whereas government-funded studies tend to find significant effects.
Sodium hypochlorite bleach and other alkali cleaners catalyze the release of the bisphenol A from polycarbonate containers. Polycarbonate is incompatible with ammonia and acetone. Alcohol is a recommended organic solvent for cleaning grease and oils from polycarbonate.
The leaching of BPA from polycarbonate can also occur at environmental temperature and normal pH (in landfills).The amount of leaching increases as the polycarbonate parts get older. A study found that the decomposition of BPA in landfills (under anaerobic conditions) will not occur. It will therefore be persistent in landfills. Eventually, it will find its way into water bodies and contribute to aquatic pollution.
This product can be further oxidized to form smaller unsaturated compounds. This can proceed via two different pathways, the products formed depends on which mechanism takes place.
Pathway A
Pathway B
Phenol derivatives are environmental pollutants, classified as volatile organic compounds (VOC). Studies show they are likely to facilitate ground level ozone formation and increase photo-chemical smog. In aquatic bodies, they can potentially accumulate in organisms. They are persistent in landfills, do not readily evaporate and would remain in the atmosphere.
Transesterification route
Properties and processing
Applications
Electronic components
Construction materials
3D printing
Data storage
Automotive, aircraft, and security components
Niche applications
Medical applications
Mobile phones
History
Potential hazards in food contact applications
Environmental impact
Disposal
Photo-oxidation of polycarbonate
Photo-aging reaction
Thermal degradation
Effect of fungi
See also
External links
|
|