Poloxamers are nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). The word was coined by BASF inventor, Irving Schmolka, who received the patent for these materials in 1973. Poloxamers are also known by the trade names Pluronic, Kolliphor (pharma grade), and Synperonic.
Because the lengths of the polymer blocks can be customized, many different poloxamers exist that have slightly different properties. For the generic term poloxamer, these copolymers are commonly named with the letter P (for poloxamer) followed by three digits: the first two digits multiplied by 100 give the approximate molecular mass of the polyoxypropylene core, and the last digit multiplied by 10 gives the percentage polyoxyethylene content (e.g. P407 = poloxamer with a polyoxypropylene molecular mass of 4000 g/mol and a 70% polyoxyethylene content). For the Pluronic and Synperonic tradenames, coding of these copolymers starts with a letter to define its physical form at room temperature (L = liquid, P = paste, F = flake (solid)) followed by two or three digits, The first digit (two digits in a three-digit number) in the numerical designation, multiplied by 300, indicates the approximate molecular weight of the hydrophobe; and the last digit x 10 gives the percentage polyoxyethylene content (e.g., L61 indicates a polyoxypropylene molecular mass of 1800 g/mol and a 10% polyoxyethylene content). In the example given, poloxamer 181 (P181) = Pluronic L61 and Synperonic PE/L 61.
! Polaxamer !! Formula !! MW (Da)!! HLB !! Source |
At low temperatures and concentrations (below the critical micelle temperature and critical micelle concentration) individual block copolymers (unimers) are present in solution. Above these values, aggregation of individual unimers occurs in a process called micellization. This aggregation is driven by the dehydration of the hydrophobic polyoxypropylene block that becomes progressively less soluble as the polymer concentration or temperature increases. The aggregation of several unimers occurs to minimize the interactions of the PPO blocks with the solvent. Thus, the core of the aggregates is made from the insoluble blocks (polyoxypropylene) while the soluble portion (polyoxyethylene) forms the shell of the micelles.
The mechanisms on the micellization at equilibrium have shown to depend on two relaxation times: (1) the first and fastest (tens of the microseconds scale) corresponds to the unimers exchange between micelles and the bulk solution and follows the Aniansson-Wall model (step-by-step insertion and expulsion of single polymer chains), and (2) the second and much slower one (in the millisecond range) is attributed to the formation and breakdown of whole micellar units leading to the final micellar size equilibration.
Besides spherical micelles, elongated or worm-like micelles can also be formed. The final geometry will depend on the entropy costs of stretching the blocks, which is directly related to their composition (size and polyoxypropylene/polyoxyethylene ratio). The mechanisms involved in the shape transformation are different compared to the dynamics of micellization. Two mechanisms were proposed for the sphere-to-rod transitions of block copolymer micelles, in which the micellar growth can occur by (A) fusion/fragmentation of micelles or (B) concomitant fusion/fragmentation of micelles and unimer exchange, followed by smoothing of the rod-like structures.
With higher increments of the temperature and/or concentration, other phenomena can occur such as the formation of highly ordered (cubic, hexagonal and lamellar). Eventually, a complete dehydration of the polyoxypropylene blocks and the collapse of the polyoxyethylene chains will lead to clouding and/or macroscopic phase separation. This is due to the fact that hydrogen bonding between the polyoxyethylene and the water molecules breaks down at high temperature and polyoxyethylene becomes also insoluble in water.
The phase transitions can also be largely influenced by the use of additives such as salts and alcohols. The interactions with salts are related to their ability to act as water structure makers (salting-out) or water structure breakers (salting-in). Salting-out salts increase the self-hydration of water through hydrogen bonding and reduce the hydration of the copolymers, thus reducing the critical micelle temperature and critical micelle concentration. Salting-in electrolytes reduce the water self-hydration and increase the polymer hydration, therefore increasing the critical micelle temperature and critical micelle concentration. The different salts have been categorized by the Hofmeister series according to their ‘salting-out’ power. Different phase diagrams characterizing all these transitions have been constructed for most poloxamers using a great variety of experimental techniques (e.g. SAXS, Differential scanning calorimetry, viscosity measurements, light scattering).
In bioprocess applications, poloxamers are used in cell culture media for their cell cushioning effects because their addition leads to less stressful shear conditions for cells in reactors. There are grades of poloxamers commercially available specifically for cell culture, including Kolliphor P 188 Bio.
In materials science, the poloxamer P123 has recently been used in the synthesis of mesoporous materials, including SBA-15.
In Colloid, certain poloxamers such as Pluronic F-108 or Pluronic F-127, are used as steric stabilizers to prevent coalescence and/or reduce aggregation. In the case of hydrophobic colloids, the poloxamer's interior hydrophobic block is absorbed into the colloid while the two hydrophilic tails remain suspended in solution, creating a steric barrier.
When mixed with water, concentrated solutions of poloxamers can form hydrogels. These gels can be extruded easily, acting as a carrier for other particles, and used for robocasting.
Another effect of the polymers upon cancer cells is the inhibition of the production of ATP in multi-drug resistant (MDR) cancer cells. The polymers seem to inhibit respiratory proteins I and IV, and the effect on respiration seems to be selective for MDR cancer cells, which may be explained by the difference in fuel sources between MDR and sensitive cells (fatty acids and glucose respectively).
The poloxamers have also been shown to enhance proto-apoptotic signaling, decrease anti-apoptoic defense in MDR cells, inhibit the glutathione/glutathione S-transferase detoxification system, induce the release of cytochrome C, increase reactive oxygen species in the cytoplasm, and abolish drug sequestering within cytoplasmic vesicles.
|
|