The Plessey Company plc was a British electronics, defence and telecommunications company. It originated in 1917, growing and diversifying into electronics. It expanded after World War II by acquisition of companies and formed overseas companies. It was listed on the London Stock Exchange and was a constituent of the FTSE 100 Index. In 1989, it was taken over by a consortium formed by GEC and Siemens which split the assets of the Plessey group.
The majority of Plessey's defence assets were amalgamated into BAE Systems in 1999 when British Aerospace merged with the defence arm of GEC, Marconi Electronic Systems (MES). The Plessey Microsystems division was the subject of a management buyout in 1988 becoming Radstone Technology, which survives today as part of Abaco Systems based in Towcester, Northamptonshire. The bulk of Plessey's telecommunications assets were acquired by Ericsson through its 2005 acquisition of Marconi Communications, a successor company of GEC.
The manufacture of electrical components became an area of growth for Plessey. A vast array of components was manufactured, many under licence from overseas companies. Plessey became one of the largest manufacturers in this field as the radio and television industries grew. In 1936/7, turnover was more than £1 million and Plessey became a public company on 17 March 1937.
To allow greater production, Plessey converted five miles of twin tunnel, built for a Fairlop Loop to the London Underground Central line from Leytonstone to Newbury Park, into a factory. The company also built a new factory at Swindon in Wiltshire, and opened several other shadow factories around the country to produce munitions. Caswell, Northamptonshire became the site of Plessey's first dedicated research centre in 1940. The wartime workforce of Plessey grew to over 10,000.
In 1951, the Electronics Division was started by Michael Clark. By 1955, this had expanded to become the Electronics and Equipment Group with 5,000 staff. The following year the Roke Manor research facility was set up under the direction of H. J. Finden near Romsey, Hampshire. Plessey produced an early integrated circuit model in 1957, before the patents of Jack St. Clair Kilby of Texas Instruments and Robert Noyce of Fairchild.
Plessey were partners in the development of the Atlas Computer in 1962 and in the development of digital telephone systems, including System X, from the late 1970s. In 1988, Plessey's Telecommunications Division merged with that of GEC to become GEC Plessey Telecommunications. Plessey Naval Systems was formed in 1986 by the merger of Plessey Marine with Plessey Displays, which had been part of Plessey Radar. Plessey were among the first firms to use computers. Their Training Department developed an interactive management game (PITDEX) using TeleType printer/keyboards to link to LEASCO computers in the United States via standard telephones and .
Plessey also pioneered the gathering and consolidation of accounting information from around the world using in-house software. Each of their 140 management reporting entities used HP125s with DIVAT (data input, validation and transmission) software. Nearly 450 validation rules ensured accuracy within and between various reports. The data were then transmitted to Ilford where a HP 3000 ran Fortran software for consolidation and reporting—also on HP125s.Micro Decision, August 1983; Accountancy, March 1984; Information Systems. February 1986 By 1972, Plessey designed the first industrial capability-based security computer, a fault-tolerant multiprocessor system called Plessey System 250. Plessey was also the lead contractor for the Ptarmigan communications system supplied to the British Army, which adopted the System 250 architecture.
A division focused on microcomputing, Plessey Microsystems, was founded in 1975, having licensed the 16-bit Miproc processor architecture developed by the Norwegian Defence Research Establishment and Aksjeselskapet Mikro-Elektronikk. In contrast to the existing implementation, announced with a 200ns cycle time, Plessey introduced Miproc with a 350ns cycle time as part of a development system costing $. During the 1970s and early 1980s, Plessey manufactured a series of computer systems and peripherals compatible with Digital Equipment Corporation's PDP-11, some based on the Miproc product which was itself revised to operate with a faster 250ns cycle time. The company would eventually expand its Miproc range to include the Miproc RTS, running the RTX real-time operating system, alongside Plessey's other product lines featuring semiconductor and bubble memory, and microprocessor-based data terminals.
Plessey Controls, from 1982 to the mid-1980s, also manufactured a type of geiger counter known as the Portable Dose Rate Meter (PDRM). It gave highly accurate readings, using the Gray system of measurement and used standard torch batteries. They were built for civil defence, but also used by the British Army. Most ended up in the hands of the Royal Observer Corps and manufacture would discontinue by the late 1980s.
At the heart of the system, installed in a huge building in the middle of a council housing estate in West Drayton, was the computer room, occupying an area of around and filled with around 1,000 racks of electronics, including mainly the XL4 computer, based entirely on germanium transistors and using a computer language developed at Exchange Works in the 1950s and 1960s. The secure status of the factory attracted many other secret contracts and led to it becoming one of the major designers and manufacturers of cryptographic equipment. Exchange Works is now luxury flats.
At the time, IMC was in the process of industrialising a unique South African invention, the Tellurometer, the first successful microwave electronic distance measurement equipment. The instrument was invented by Trevor Wadley of the Telecommunications Research Laboratory of the South African Council for Scientific and Industrial Research (CSIR), also responsible for the Wadley loop receiver, which allowed precision tuning over wide bands, a task that had previously required switching out multiple crystals.
South African insurance and investment company Sanlam bought 26% of Plessey South Africa in 1974, with first right of refusal to purchase more of the company. These shares were later transferred to Sankorp, Sanlam's industrial holdings company. In 1989, when GEC-Siemens took control of the Plessey Company, Sankorp indicated its intention to purchase the remaining 74% of shares in the South African subsidiary.
In 1988, Plessey and GEC merged their telecom units to form GEC Plessey Telecommunications (GPT), at the time the UK's leading telecommunications manufacturer.
By 1997, the GPT name disappeared in the UK and the company was known as Siemens GEC Communication Systems (SGCS), which later became Siemens Communications. In August 1998, GEC acquired Siemens' 40% stake in GPT (by now only existing as a legal entity) and merged GPT with the telecoms units of its other subsidiaries, namely Marconi SpA, GEC Hong Kong and ATC South Africa, to form Marconi Communications. In December 1999, GEC's defence arm Marconi Electronic Systems was amalgamated with British Aerospace to form BAE Systems.
The remainder of GEC was renamed to Marconi plc, and Marconi Communications became its principal subsidiary. GEC buys Siemens out of GPT This company was affected by the dot-com bubble and was restructured into Marconi Corporation in 2003, then collapsed in 2005. Most of it (including Marconi Communications) was bought by Ericsson and the remainder became Telent.
The part of GPT which evolved into Siemens Communications would eventually become Siemens Enterprise Communications in 2008.
Plessey Semiconductors (GPS) was purchased by Mitel Semiconductors of Canada in 1998. After a number of downsizes, including the purchase of the power semiconductor and silicon on sapphire operation at Lincoln, Lincolnshire by Dynex Semiconductor in 2000, the company renamed itself Zarlink Semiconductor in 2001. The GPS fabrication plant in Plymouth was acquired by X-Fab.
Using the GaN-on-silicon technology and semiconductor expertise, Plessey Semiconductors Ltd manufactured solid state lighting, horticultural lighting and medical sensing products. Their GaN-on-silicon i2LED high power LEDs and Stellar Orion Beam Forming modules, launched in autumn 2016, which enabled new form factors of lighting products and remove critical design constraints for lighting product designers. In horticulture, the Plessey Attis Growlight was at the forefront of an engineering approach to LED based plant grow lights which was then developed into a new brand, Hyperion Grow Lights. The company's medical products were based on the EPIC sensor, which were used in the advanced portable ECG monitoring device, Impulse, and was also the basis of an R&D program, named Warden, to develop driver alertness monitoring devices in automotive and aeronautical applications.
In 2017, Plessey pivoted the focus of the business to the R&D and manufacturing of microLEDs (micro light-emitting diodes) as a market disrupting display technology for a wide range of applications, including: Augmented Reality, Mixed Reality, smartphones, televisions, smartwatches, head-up displays, head-mounted displays and more.
Plessey continues to operate in the Roborough site with leading-edge 150mm and 200mm wafer processing facilities to undertake design, test and assembly of products, and a comprehensive suite of photonic characterisation and applications laboratories.
Their original microLED product was an illuminator for display light engines (DMD and LCOS), which offered a 40% reduction in light engine size whilst delivering higher energy efficiency. They have now upgraded to full-field emissive microLED displays that combine very high-density RGB pixel arrays with high-performance CMOS backplanes to produce very high-brightness, low-power and high-frame-rate image sources. These are innovative products that are widely recognised within the industry with many accolades from prestigious electronics, engineering and display industry award programs, including: Elektra Awards 2017, British Engineering Excellence Awards 2017, National Technology Awards 2018, CES Innovation Awards 2019 and Electronics Industry Awards 2019.
In March 2019, Plessey used their GaN-on-silicon technology, which natively emits blue, to innovatively engineer the early layers within the process to emit native green, opening more opportunities for markets such as military. Plessey also achieved the world's first GaN-on-silicon monolithic, wafer to wafer bonding, in May which was a massive breakthrough for not only the company but the industry.
In 2025, Plessey Semiconductors was acquired by Haylo Labs, using funding from Chinese AI smartglasses manufacturer Goertek Inc. The acquisition was given national security clearance after a review under the National Security and Investment Act 2021.
PTSA continued to grow with a strong focus on telecommunications and defence products, particularly with a major expansion into large projects, rolling out the microwave backbone of MTN, one of South Africa's first GSM cellular networks and the installation of a fibre optic network and radio broadcasting system in Malaysia. A software division was formed through the acquisition of BSW data, largely staffed by engineers from the recently terminated South African space programme in which PTSA had also participated, both in the electronics of the launch vehicle and the satellite itself.
1995 was a landmark year in the history of the business in South Africa. The merger of PTSA and Tek Electronics, the consumer electronics audio and video products, manufacturer and distributor, (also wholly owned by Sankorp) took the business full circle back to its consumer electronics roots. This resulted in the renaming of PTSA back to the original name of Plessey South Africa Limited. The full acquisition of AWA-Plessey Communications, which Plessey jointly owned in Australia with Amalgamated Wireless (Australasia) Ltd (AWA) and had a similar product portfolio, resulted in penetration into the Pacific Rim market. The culmination of this growth was the company's listing on the Johannesburg Stock Exchange (JSE) as the Plessey Corporation in the same year. Trading started off at R4.80 a share. On the evening of 6 February 1996, a devastating fire swept through two bays of the White Road factory in Retreat, Cape Town causing huge damage to stock, instruments, plant and work in progress. No one was injured, but work was disrupted for several weeks. Large sections of the factory had to be rebuilt.
At the end of 1996, Plessey Corporation sold off the Sales and marketing business of Telefunken, Pioneer and Satellite TV.
In August 1998, Plessey Corporation was bought by Dimension Data Holdings and Worldwide African Investment Holdings for R1.6 billion. The new owners retained BSW Data, Plessey Solutions and Communications Systems. The remaining divisions, notably with a product development and manufacturing focus, were bought back by a combined management buyout supported by Rand Merchant Bank. The corporate name was changed to Tellumat Pty Ltd. Tellumat continues to develop and manufacture Plessey-branded products as before and operates in the defence, telecommunications and contract manufacturing markets.
Plessey barcodes use two bar widths. Whitespace between bars is not significant. The start element is a wide bar, and the stop element is two narrow bars. In between, the bars are in groups of four. High order bars appear leftmost. Narrow bars are 0 and wide bars are 1.
This symbology is not self checking, though a modulo 10 or modulo 11 checksum (or some combination of both checksums, depending on application) is usually appended.
Post World War II
UK air defence
South Africa
Australia
/ref> that made defense equipment and TVs. In the 1970s and 80s it produced Ericsson Crossbar Telephone Exchanges under licence for Telecom Australia and the PNG Post and Telegraphs department.
GEC takeover bid
GEC Siemens takeover
Break-up of the business
GEC acquisitions
Siemens acquisitions
Jointly owned
Disposals
Subsequent history
UK
Plessey Semiconductors Ltd
South Africa
Plessey barcodes
External links
|
|