Phoronids (taxonomic name Phoronida, sometimes called horseshoe worms) are a small phylum of marine animals that Filter feeder with a lophophore (a "crown" of tentacles), and build upright tubes of chitin to support and protect their soft bodies. They live in most of the oceans and seas, including the Arctic Ocean but excluding the Antarctic Ocean, and between the intertidal zone and about 400 meters down. Most adult phoronids are 2 cm long and about 1.5 mm wide, although the largest are 50 cm long.
The name of the group comes from its type genus: Phoronis. "New Latin, from Phoronis + ." "New Latin, probably from Latin Phoronis (Io, mythical priestess of Ancient Argos who was loved by Zeus)."
A blood vessel leads up the middle of the body from the stomach to a circular vessel at the base of the lophophore, and from there a single blind vessel runs up each tentacle. A pair of blood vessels near the body wall lead downward from the lophophore ring to the stomach and also to blind branches throughout the body. There is no heart, but the major vessels can contract in waves to move the blood. Phoronids do not ventilate their trunks with oxygenated water, but rely on respiration through the lophophore. The blood contains hemoglobin, which is unusual in such small animals and seems to be an adaptation to anoxic and hypoxic environments. The blood of Phoronis architecta carries twice as much oxygen as a human of the same weight. Two metanephridia filter the body fluid, returning any useful products and dumping the remaining soluble wastes through a pair of pores beside the anus.
One species builds colonies by budding or by splitting into top and bottom sections, and all phoronids reproduce sexually from spring to autumn. The eggs of most species form free-swimming actinotroch larvae, which feed on plankton. An actinotroch settles to the seabed after about 20 days and then undergoes a radical change in 30 minutes: the larval tentacles are replaced by the adult lophophore; the anus moves from the bottom to just outside the lophophore; and this changes the gut from upright to a U-bend, with the stomach at the bottom of the body. One species forms a "slug-like" larva, and the larvae of a few species are not known. Phoronids live for about one year.
Some species live separately, in vertical tubes embedded in soft sediment, while others form tangled masses buried in or encrusting rocks and shells. Species able to bore into materials like limestone and dead corals do so by chemical secretions. Coral Reefs of the Gulf: Adaptation to Climatic Extremes In some habitats populations of phoronids reach tens of thousands of individuals per square meter. The actinotroch larvae are familiar among plankton, and sometimes account for a significant proportion of the zooplankton biomass. Predators include fish, (snails), and (tiny roundworms). One phoronid species is unpalatable to many epibenthic predators. Various infest phoronids' body cavities, digestive tract and tentacles. It is unknown whether phoronids have any significance for humans. The IUCN has not listed any phoronid species as endangered.
As of 2010 there are no indisputable body fossils of phoronids. There is good evidence that phoronids created found in the Silurian, Devonian, Permian, Jurassic and Cretaceous periods, and possibly in the Ordovician and Triassic. Phoronids, and (ectoprocts) have collectively been called , because all use lophophores to feed. From about the 1940s to the 1990s, phylogeny based on embryology and morphological features placed lophophorates among or as a sister group to the , a super-phylum which includes and . While a minority adhere to this view, most researchers now regard phoronids as members of the protostome super-phylum Lophotrochozoa. Although analysts using molecular phylogeny are confident that members of Lophotrochozoa are more closely related to each other than of non-members, the relationships between members are mostly unclear. Some analyses regard phoronids and brachiopods as sister group, while others place phoronids as a sub-group within brachiopoda.
+ Summary of distinguishing features |
For feeding and respiration each phoronid has at the top end a lophophore, a "crown" of tentacles with which the animal filter feeding. In small species the "crown" is a simple circle, in medium-size species it is bent into the shape of a horseshoe with tentacles on the outer and inner sides, and in the largest species the ends of the horseshoe wind into complex spirals. These more elaborate shapes increase the area available for feeding and respiration. The tentacles are hollow, held upright by fluid pressure, and can be moved individually by muscles.
The mouth is inside the base of the crown of tentacles but to one side. The gut runs from the mouth to one side of the stomach, in the bottom of the ampulla. The intestine runs from the stomach, up the other side of the body, and exits at the anus, outside and a little below the crown of tentacles. The gut and intestine are both supported by two mesenteries (partitions that run the length of the body) connected to the body wall, and another mesentery connects the gut to the intestine.
The body is divided into , compartments lined with mesothelium.
The tube comprises a three-layered organic inner cylinder, and an agglutinated external layer.
A blood vessel starts from the peritoneum (the membrane that loosely encloses the stomach), with blind capillaries supplying the stomach. The blood vessel leads up the middle of the body to a circular vessel at the base of the lophophore, and from there a single blind vessel runs up each tentacle. A pair of blood vessels near the body wall lead downward from the lophophore ring, and in most species these are combined into one a little below the lophophore ring. The downward vessel(s) leads back to the peritoneum, and also to blind branches throughout the body. There is no heart, but muscles in the major vessels contract in waves to move the blood. Unlike many animals that live in tubes, phoronids do not ventilate their trunks with oxygenated water, but rely on respiration by the lophophore, which extends above hypoxic sediments. The blood has hemocytes containing hemoglobin, which unusual in such small animals and seems to be an adaptation to anoxic and hypoxic environments. The blood of Phoronis architecta carries as much oxygen per cm3 as that of most ; the blood's volume in cm3 per gm of body weight is twice that of a human.
on the walls of the blood vessels perform first-stage filtration of soluble wastes into the main coelom's fluid. Two metanephridia, each with a funnel-like intake, filter the fluid a second time, returning any useful products to the coelom
Except for retracting the body into the tube, phoronids have limited and slow movement: partial emerging from the tube; bending the body when extended; and the lophophore's flicking of food into the mouth.
Development of the eggs is a mixture of deuterostome and protostome characteristics. Early divisions of the egg are holoblastic (the cells divide completely) and radial (they gradually form a stack of circles). The process is regulative (the fate of each cell depends on interaction with other cells, not on a rigid program in each cell), and experiments that divided early embryos produced complete larvae. Mesoderm is formed from mesenchyme originating from the archenteron. The coelom is formed by schizocoely, and the blastopore (a dent in the embryo) becomes the mouth.
The slug-like larva of Phoronis ovalis, the only known species with a lecithotrophic (non-feeding) larvae, lack tentacles and swims for about 4 days, creeps on the seabed for 3 to 4 days, then bores into a carbonate floor. Nothing is known about three species. The remaining species develop free-swimming actinotroch larvae, which feed on plankton. The actinotroch is an upright cylinder with the anus at the bottom and fringed with cilia. At the top is a lobe or hood, under which are: a ganglion, connected to a patch of cilia outside the apex of the hood; a pair of protonephridia (smaller and simpler than the metanephridia in the adult); the mouth; and feeding tentacles that encircle the mouth. After swimming for about 20 days, the actinotroch settles on the seabed and undergoes a catastrophic metamorphosis (radical change) in 30 minutes: the hood and larval tentacles are absorbed and the juvenile body forms from the larva's metasomal sack. The adult lophophore is created around the mouth, and by growing a ventral side that is extremely long compared to the dorsal side, the gut develops a U-bend so that the anus is just under and outside the lophophore. Finally the adult phoronid builds a tube.
Phoronids live for about one year.
Phoronis australis bores into the wall of the tube of a Ceriantharia, Ceriantheomorphe brasiliensis, and uses this as a foundation for building its own tube. One cerianthid can house up to 100 phoronids. In this Inquilism, the anemone experiences no significant benefits nor harm, while the phoronid benefits from: a foundation for its tube; food (both animals are filter-feeders); and protection, as the cerianthid withdraws into its tube when danger threatens, and this alerts the phoronid to retract into its own tube.
Although predators of phoronids are not well known, they include fish, (snails), and (tiny roundworms). Phoronopsis viridis, which reaches densities of 26,500 per square meter on tidal flats in California (USA), is unpalatable to many epibenthic predators, including fish and crabs. The unpalatability is strongest in the top section, including the lophophore, which is exposed to predators when phoronids feed. When the lophophores were removed in an experiment, the phoronids were more palatable, but this effect reduced over 12 days as the lophophores regenerated. These broadly effective defenses, which appear unusual among invertebrates inhabiting soft sediment, may be important in allowing Phoronopsis viridis to reach high densities. Some infest phoronids: Progenesis metacercariae and cysts of in phoronids' cavities; unidentified in phoronids' digestive tract; and an ancistrocomid ciliate parasite, Heterocineta, in the tentacles.
It is unknown whether phoronids have any significance for humans. The IUCN has not listed any phoronid species as endangered.
There is good evidence that species of Phoronis created the of the ichnogenus Talpina, which have been found in the Devonian, Jurassic and Cretaceous periods. The Talpina animal bored into calcareous algae, , echinoid tests (shells), mollusc shells and the rostra of . or Hederelloids are fossilized tubes, usually curved and between 0.1 and 1.8 mm wide, found from the Silurian to the Permian, and possibly in the Ordovician and Triassic. Their branching colonies may have been made by phoronids.
Nielsen (2002) views the phoronids and brachiopods as affiliated with the deuterostome pterobranchs, which also filter-feed by tentacles, because the current-driving cells of the lophophores of all three have one cilia per cell, while lophophores of , which he regards as protostomes, have multiple cilia per cell. Helmkampf, Bruchhaus and Hausdorf (2008) summarise several authors' embryological and morphological analyses which doubt or disagree that phoronids and brachiopods are deuterostomes:
From 1988 onwards analyses based on molecular phylogeny, which compares biochemistry features such as similarities in DNA, have placed phoronids and brachiopods among the Lophotrochozoa, a protostome super-phylum that includes , and but excludes the other main protostome super-phylum Ecdysozoa, whose members include . Cohen wrote, "This inference, if true, undermines virtually all morphology–based reconstructions of phylogeny made during the past century or more."
While analyses by molecular phylogeny are confident that members of Lophotrochozoa are more closely related to each other than of non-members, the relationships between members are mostly unclear. The Lophotrochozoa are generally divided into: Lophophorata (animals that have lophophores), including Phoronida and Brachiopoda; Trochozoa (animals many of which have trochophore larvae), including molluscs, , , and ; and some other phyla (such as Platyhelminthes, Gastrotricha, Gnathostomulida, Micrognathozoa, and Rotifera).
Molecular phylogeny indicates that Phoronida are closely related to Brachiopoda, but Bryozoa (Ectoprocta) are not closely related to this group, despite using a similar lophophore for feeding and respiration. This implies that the traditional definition "Lophophorata" is not monophyletic. Recently the term "Lophophorata" has been applied only to the Phoronida and Brachiopoda, and Halanych (2004) thinks this change will cause confusion. Some analyses regard Phoronida and Brachiopoda as sister-groups, while others place Phoronida as a sub-group within Brachiopoda, implying that Brachiopoda is paraphyletic. Cohen and Weydman's analysis (2005) concludes that phoronids are a sub-group of inarticulate brachiopods (those in which the hinge between the two valves have no teeth and sockets
In 1999 Temereva and Malakhov described Phoronis svetlanae. In 2000 Temereva described a new species, Phoronopsis malakhovi, while Emig regards it as a synonym for Phoronopsis harmeri. Santagata thinks Phoronis architecta is a different species from both Phoronis psammophila and Phoronis muelleri, and that "the species diversity is currently underestimated". In 2009 Temereva described what may be larvae of Phoronopsis albomaculata and Phoronopsis californica. She wrote that, while there are 12 undisputed adult phoronid species, 25 morphological types of larvae have been identified.
|
|