Parthenogenesis (; from the Greek + q.v..) is a natural form of asexual reproduction in which the embryo develops directly from an egg without need for fertilization. In , parthenogenesis means the development of an embryo from an unfertilized Gametophyte. In , parthenogenesis is a component process of apomixis. In algae, parthenogenesis can mean the development of an embryo from either an individual sperm or an individual egg.
Parthenogenesis occurs naturally in some plants, algae, invertebrate animal species (including nematodes, some , , some , , some mites, some , some Phasmatodea, and ), and a few , such as some fish, amphibians, and . This type of reproduction has been induced artificially in animal species that naturally reproduce through sex, including fish, amphibians, and mice.
Normal egg cells form in the process of meiosis and are haploid, with half as many as their mother's body cells. Haploid individuals, however, are usually non-viable, and parthenogenetic offspring usually have the diploid chromosome number. Depending on the mechanism involved in restoring the diploid number of chromosomes, parthenogenetic offspring may have anywhere between all and half of the mother's . In some types of parthenogenesis, the offspring that have all of the mother's genetic material are called full Cloning and those having only half are called half clones. Full clones are usually formed without meiosis. If meiosis occurs, the offspring get only a fraction of the mother's alleles since crossing over of DNA takes place during meiosis, creating variation.
Parthenogenetic offspring in species that use either the XY or the X0 sex-determination system have two X chromosomes and are female. In species that use the ZW sex-determination system, they have either two Z chromosomes (male) or two W chromosomes (mostly non-viable but rarely a female), or they could have one Z and one W chromosome (female).
Some species reproduce exclusively by parthenogenesis (such as the Bdelloidea), while others can switch between sexual reproduction and parthenogenesis. This is called facultative parthenogenesis (other terms are cyclical parthenogenesis, heterogamy or heterogony). The switch between sexuality and parthenogenesis in such species may be triggered by the season (aphid, some gall wasps), or by a lack of males or by conditions that favour rapid population growth (rotifers and cladocerans like Daphnia). In these species, asexual reproduction occurs either in summer (aphids) or as long as conditions are favourable. This is because in asexual reproduction, a successful genotype can spread quickly without being modified by sex or wasting resources on male offspring who will not give birth. Some species can produce both sexually and through parthenogenesis, and offspring in the same clutch of a species of tropical lizard can be a mix of sexually produced offspring and parthenogenically produced offspring. In California condors, facultative parthenogenesis can occur even when a male is present and available for a female to breed with. In times of stress, offspring produced by sexual reproduction may be fitter as they have new, possibly beneficial gene combinations. In addition, sexual reproduction provides the benefit of meiotic recombination between non-sister chromosomes, a process associated with repair of DNA double-strand breaks and other DNA damages that may be induced by stressful conditions.
Many taxa with heterogony have within them species that have lost the sexual phase and are now completely asexual. Many other cases of obligate parthenogenesis (or gynogenesis) are found among polyploids and hybrids where the chromosomes cannot pair for meiosis.
The production of female offspring by parthenogenesis is referred to as thelytoky (e.g., aphids) while the production of males by parthenogenesis is referred to as arrhenotoky (e.g., bees). When unfertilized eggs develop into both males and females, the phenomenon is called deuterotoky.
Parthenogenesis involving meiosis is more complicated. In some cases, the offspring are haploid (e.g., male ants). In other cases, collectively called automictic parthenogenesis, the ploidy is restored to diploidy by various means. This is because haploid individuals are not viable in most species. In automictic parthenogenesis, the offspring differ from one another and their mother. They are called half clones of their mother.
Diploidy can be restored by the doubling of the chromosomes without cell division before meiosis begins or after meiosis is completed. This is an endomitotic cycle. Diploidy can also be restored by fusion of the first two blastomeres, or by fusion of the meiotic products. The chromosomes may not separate at one of the two anaphases (restitutional meiosis)l or the nuclei produced may fuse, or one of the polar bodies may fuse with the egg cell at some stage during its maturation.
Some authors consider all forms of automixis sexual as they involve recombination. Many others classify the endomitotic variants as asexual and consider the resulting embryos parthenogenetic. Among these authors, the threshold for classifying automixis as a sexual process depends on when the products of anaphase I or of anaphase II are joined. The criterion for sexuality varies from all cases of restitutional meiosis, to those where the nuclei fuse or to only those where gametes are mature at the time of fusion. Those cases of automixis that are classified as sexual reproduction are compared to self-fertilization in their mechanism and consequences.
The genetic composition of the offspring depends on what type of automixis takes place. When endomitosis occurs before meiosisCosín, Darío J. Díaz, Marta Novo, and Rosa Fernández. "Reproduction of Earthworms: Sexual Selection and Parthenogenesis". In Biology of Earthworms
If terminal fusion (restitutional meiosis of anaphase II or the fusion of its products) occurs, a little over half of the mother's genetic material is present in the offspring, and the offspring are mostly homozygous. This is because at anaphase II the sister chromatids are separated and whatever heterozygosity is present is due to crossing over. In the case of endomitosis after meiosis, the offspring is completely homozygous and has only half the mother's genetic material. This can result in parthenogenetic offspring being unique from each other and from their mother.
When meiosis is involved, the sex of the offspring depends on the type of sex determination system and the type of apomixis. In species that use the XY sex-determination system, parthenogenetic offspring have two X chromosomes and are female. In species that use the ZW sex-determination system the offspring genotype may be one of ZW (female), ZZ (male), or WW (non-viable in most species, but a fertile, viable female in a few, e.g., Boidae). ZW offspring are produced by endoreplication before meiosis or by central fusion. ZZ and WW offspring occur either by terminal fusion or by endomitosis in the egg cell.
In polyploid obligate parthenogens, like the whiptail lizard, all the offspring are female.
In many hymenopteran insects, such as honeybees, female eggs are produced sexually, using sperm from a drone father, while the production of further drones (males) depends on the queen (and occasionally workers) producing unfertilized eggs. This means that females (workers and queens) are always diploid, while males (drones) are always haploid and are produced parthenogenetically.
In aphids, a generation sexually conceived by a male and a female produces only females. The reason for this is the non-random segregation of the sex chromosomes 'X' and 'O' during spermatogenesis.
Facultative parthenogenesis is often used to describe cases of spontaneous parthenogenesis in normally sexual animals. For example, many cases of spontaneous parthenogenesis in sharks, some snakes, , and a variety of domesticated birds were widely attributed to facultative parthenogenesis. These cases are examples of spontaneous parthenogenesis. The occurrence of such asexually produced eggs in sexual animals can be explained by a meiotic error, leading to eggs produced via automixis.
Some invertebrate species that feature (partial) sexual reproduction in their native range are found to reproduce solely by parthenogenesis in areas to which they have been invasive species. Relying solely on parthenogenetic reproduction has several advantages for an invasive species: it obviates the need for individuals in a very sparse initial population to search for mates; and an exclusively female sex distribution allows a population to multiply and invade more rapidly (potentially twice as fast). Examples include several aphid species and the willow sawfly, Nematus oligospilus, which is sexual in its native Holarctic realm habitat but parthenogenetic where it has been introduced into the Southern Hemisphere.
During oocyte development, high metaphase-promoting factor (MPF) activity causes mammalian oocytes to arrest at the metaphase II stage until fertilization by a sperm. The fertilization event causes intracellular calcium oscillations and targeted degradation of cyclin B, a regulatory subunit of MPF, thus permitting the MII-arrested oocyte to proceed through meiosis.
To initiate unfertilised development of swine oocytes, various methods exist to induce an artificial activation that mimics sperm entry, such as calcium ionophore treatment, microinjection of calcium ions, or electrical stimulation. Treatment with cycloheximide, a non-specific protein synthesis inhibitor, enhances the development of unfertilised eggs in swine presumably by continual inhibition of MPF/cyclin B. As meiosis proceeds, extrusion of the second polar is blocked by exposure to cytochalasin B. This treatment results in a diploid (2 maternal genomes) parthenote The resulting embryos can be surgically transferred to a recipient oviduct for further development, but will succumb to developmental failure after ≈30 days of gestation. The swine placenta in these cases often appears hypo-vascular: see free image (Figure 1) in linked reference.
Induced parthenogenesis of this type in mouse and results in abnormal development. This is because mammals have imprinted genetic regions, where either the maternal or the paternal chromosome is inactivated in the offspring for development to proceed normally. A mammal developing from parthenogenesis would have double doses of maternally imprinted genes and lack paternally imprinted genes, leading to developmental abnormalities. It has been suggested that defects in folding or interdigitation are one cause of swine abortive development. As a consequence, research on the induced development of unfertilised eggs in humans is focused on the production of embryonic stem cells for use in medical treatment, not as a reproductive strategy.
In 2022, researchers reported that they had produced viable offspring born from unfertilized eggs in mice, addressing the problems of genomic imprinting by "targeted DNA methylation rewriting of seven imprinting control regions".
In 1995, there was a reported case of partial human parthenogenesis; a boy was found to have some of his cells (such as white blood cells) lacking any genetic content from his father. Scientists believe that an unfertilized egg began to self-divide but then had some (but not all) of its cells fertilized by a sperm cell; this must have happened early in development, as self-activated eggs quickly lose their ability to be fertilized. The unfertilized cells eventually duplicated their DNA, boosting their chromosomes to 46. When the unfertilized cells hit a developmental block, the fertilized cells took over and developed that tissue. The boy had asymmetrical facial features and learning difficulties but was otherwise healthy. This would make him a parthenogenetic chimera (a child with two cell lineages in his body).Philip Cohen, "The boy whose blood has no father", New Scientist, 7.10.1995 While over a dozen similar cases have been reported since then (usually discovered after the patient demonstrated clinical abnormalities), there have been no scientifically confirmed reports of a non-chimeric, clinically healthy human parthenote (i.e. produced from a single, parthenogenetic-activated oocyte).
In 2007, the International Stem Cell Corporation of California announced that Elena Revazova had intentionally created human stem cells from unfertilized human eggs using parthenogenesis. The process may offer a way to create stem cells genetically matched to a particular female to treat degenerative diseases. The same year, Revazova and ISCC published an article describing how to produce human stem cells that are homozygous in the HLA region of DNA. These stem cells are called HLA homozygous parthenogenetic human stem cells (hpSC-Hhom) and would allow derivatives of these cells to be implanted without immune rejection. With the selection of oocyte donors according to HLA haplotype, it would be possible to generate a bank of cell lines whose tissue derivatives, collectively, could be MHC-matched with a significant number of individuals within the human population.
After an independent investigation, it was revealed that the discredited South Korean scientist Hwang Woo-Suk unknowingly produced the first human embryos resulting from parthenogenesis. Initially, Hwang claimed he and his team had extracted stem cells from cloned human embryos, a result later found to be fabricated. Further examination of the chromosomes of these cells shows indicators of parthenogenesis in those extracted stem cells, similar to those found in the mice created by Tokyo scientists in 2004. Although Hwang deceived the world about being the first to create artificially cloned human embryos, he contributed a breakthrough to stem cell research by creating human embryos using parthenogenesis.Williams, Chris. "Stem cell fraudster made 'virgin birth' breakthrough: Silver lining for Korean science scandal", The Register, 3 August 2007.
This form of reproduction is seen in some live-bearing fish of the genus Poeciliopsis as well as in some of the Pelophylax spp. ("green frogs" or "waterfrogs"):
Other examples where hybridogenesis is at least one of the modes of reproduction include i.e.,
/ref> or when central fusion occurs (restitutional meiosis of anaphase I or the fusion of its products), the offspring get all to more than half of the mother's genetic material and heterozygosity is mostly preserved (if the mother has two alleles for a locus, the offspring will likely get both). This is because in anaphase I the homologous chromosomes are separated. Heterozygosity is not completely preserved when crossing over occurs in central fusion. In the case of pre-meiotic doubling, recombination, if it happens, occurs between identical sister chromatids.
Sex of the offspring
Facultative
Obligate
Natural occurrence
Artificial induction
In humans
Similar phenomena
Gynogenesis
Hybridogenesis
In human culture
See also
Further reading
External links
|
|