Product Code Database
Example Keywords: final fantasy -uncharted $7-115
barcode-scavenger
   » » Wiki: Paraquat
Tag Wiki 'Paraquat'.
Tag

Paraquat (; ), or N, N′-dimethyl-4,4′-bipyridinium dichloride (), also known as methyl viologen, is a toxic with the (C6H7N)2Cl2. It is classified as a , a family of -active heterocycles of similar structure.In 1932, the German-American chemist (1875–1949) named paraquat "methyl viologen" and used it as an indicator in redox reactions. See:

  • See also: This salt is one of the most widely used worldwide. It is quick-acting and non-selective, killing green plant tissue on contact.

Paraquat is highly toxic to humans and other animals. The toxicity and lethality depends on the dose and how the herbicide is absorbed by the body. In humans, paraquat damages the mouth, stomach, and intestines if it is ingested orally. Once absorbed in the body, paraquat causes particular damage to the lungs, kidneys, and liver. Paraquat's lethality is attributed to its enhancing production of anions and human lung cells can accumulate paraquat. Paraquat exposure has been strongly linked to the development of Parkinson's disease.

Paraquat may be in the form of salt with or other ; quantities of the substance are sometimes expressed by cation mass alone (paraquat cation, paraquat ion). The name is derived from the para positions of the quaternary nitrogens.


Production and redox reactions
is coupled by treatment with in followed by oxidation to give 4,4′-bipyridine. This chemical is then di with (its discoverers Austrian chemist and his student M. Russo used ) to give the final product as the dichloride salt.

Use of other methylating agents gives the bispyridinium with alternate . For example, 's original synthesis used to produce the di.


Herbicide use
Although first synthesized by Weidel and Russo in 1882, The Austrian chemist and his student M. Russo synthesized the salt of paraquat (which they called Dimethyldipyridyljodid) by reacting 4,4'-bipyridine ( γ-Dipyridyl) with ( Jodmethyl). The synthesis is described on pages 863–864 and the molecule's structure is proposed on p. 867. paraquat's herbicidal properties were not recognized until 1955 in the Imperial Chemical Industries (ICI) laboratories at Jealott's Hill, Berkshire, England.
(1978). 9780901747013, Imperial Chemical Industries Ltd.. .
Paraquat was first manufactured and sold by ICI in early 1962 under the Gramoxone, and is today among the most commonly used herbicides.

Paraquat is classified as a non-selective contact herbicide. The key characteristics that distinguish it from other agents used in plant protection products are:

  • It kills a wide range of annual and broad-leaved weeds and the tips of established perennial weeds.
  • It is very fast-acting.
  • It is within minutes of application.
  • It is partially inactivated upon contact with soil.

These properties led to paraquat being used in the development of .

The European Union approved the use of paraquat in 2004 but Sweden, supported by Denmark, Austria, and Finland, appealed this decision. In 2007, the court annulled the directive authorizing paraquat as an active plant protection substance stating that the 2004 decision was wrong in finding that there were no indications of neurotoxicity associated with paraquat and that the studies about the link between paraquat and Parkinson's disease should have been considered.Court of first instance of the European Communities, Press Release No° 45/07 Thus, paraquat has been banned in the European Union since 2007.

Https://ppqs.gov.in/sites/default/files/list_of_pesticides_which_are_banned_refused_registration_and_restricted_in_use_0.pdf< /ref> Thailand in 2019 and Brazil, Chile, Malaysia, Peru and Taiwan between 2020 and 2022. In the United States, paraquat is available primarily as a solution in various strengths. It is classified as a restricted use pesticide, which means that it can be used by licensed applicators only. According to an October 2021 estimate, the use of paraquat in US agriculture as mapped by the US Geological Survey showed a doubling from 2013 to 2018, reaching annually, up from in 1974.

There is an ongoing international campaign for a global ban, but the cheap and popular paraquat continues to be unrestricted in most developing countries. The Chemical Review Committee (CRC) of the Rotterdam Convention recommended to the Conference of the Parties (COP) paraquat dichloride formulations for inclusion in Annex III to the Convention in 2011. A small group of countries, including India and Guatemala and supported by manufacturers, have since blocked the listing of paraquat as a hazardous chemical for the purposes of the Rotterdam Convention.

In Australia, paraquat is used as a herbicide to control annual grasses, broadleaf weeds and in crops of , , , , and . Aerial spraying is forbidden, as is harvesting within 2 weeks of application in some crops.

In India, Paraquat dichloride 24% SL is widely used for broad-spectrum control of weeds on potato, cotton, rubber, wheat, tea, maize, rice, grapes, apple and aquatic weeds.


Reactivity and mode of action
Paraquat is an oxidant that interferes with electron transfer, a process that is common to all life. Addition of one electron gives the radical cation:
paraquat2+ + e paraquat•+
The radical cation is also susceptible to further reduction to the neutral paraquat0:
paraquat•+ + e paraquat0

As an herbicide, paraquat acts by inhibiting photosynthesis. In light-exposed plants, it accepts electrons from (more specifically , which is presented with electrons from PS I) and transfers them to molecular oxygen. In this manner, destructive reactive oxygen species (ROS) are produced. In forming these reactive oxygen species, the oxidized form of paraquat is regenerated, and is again available to shunt electrons from photosystem I to restart the cycle.

(1980). 9780126764505, London; New York : Academic Press. .
This induces , and unlike with some mechanisms of necrosis, does not produce double-stranded breaks. Target weeds die within 4 days; symptoms can show after as little as a few hours.

Paraquat is often used in science to catalyze the formation of ROS, more specifically, the free radical. Paraquat will undergo redox cycling in vivo, being reduced by an electron donor such as , before being oxidized by an electron receptor such as to produce , a major ROS.


Weed resistance management
Problems with herbicide resistant weeds may be addressed by applying herbicides with different modes of action, along with cultural methods such as , in integrated weed management (IWM) systems. Paraquat, with its distinctive mode of action, is one of few chemical options that can be used to prevent and mitigate problems with weeds that have become resistant to the very widely used non-selective herbicide . Paraquat is a Group L (Aus), D (global), 22 (numeric) resistance class herbicide, which it shares with and .

One example is the "double knock" system used in Australia. Before planting a crop, weeds are sprayed with glyphosate first, then followed seven to ten days later by a paraquat herbicide. Although twice as expensive as using a single glyphosate spray, the "Double Knock" system is widely relied upon by farmers as a resistance management strategy. Nevertheless, herbicide resistance has been seen for both herbicides in a vineyard in Western Australia – though this singular report gives no indication of what regimen was being followed, particularly if the two herbicides were being used in a "double knock" tandem.

A computer simulation reported in the scientific journal Weed Research showed that with alternating annual use between glyphosate and paraquat, only one field in five would be expected to have glyphosate-resistant annual ryegrass ( ) after 30 years, compared to nearly 90% of fields sprayed only with glyphosate. A "Double Knock" regime with paraquat cleaning-up after glyphosate was predicted to keep all fields free of glyphosate resistant ryegrass for at least 30 years.


Toxicity
Paraquat is toxic to humans (Category II) by the and moderately toxic (Category III) through the skin. Paraquat Dichloride , United States Environmental Protection Agency, accessed 16 August 2007. Pure paraquat, when ingested, is highly toxic to mammals, including humans, causing severe and potentially leading to severe lung damage (e.g., irreversible pulmonary fibrosis, also known as 'paraquat lung'), acute respiratory distress syndrome (), and death. The mortality rate is estimated between 60% and 90%.

Paraquat is also toxic when inhaled and is in the Toxicity Category I (the highest of four levels) for acute inhalation effects. For agricultural uses, the United States Environmental Protection Agency (EPA) determined that particles used in agricultural practices (400–800 μm) are not in the respirable range. Paraquat also causes moderate to severe irritation of the eye and skin. Diluted paraquat used for spraying is less toxic; thus, the greatest risk of accidental poisoning is during mixing and loading paraquat for use.

The standard treatment for paraquat poisoning is first to remove as much as possible by pumping the stomach. Fuller's earth or activated charcoal may also improve outcomes depending on the timing. Haemodialysis, haemofiltration, haemoperfusion, or antioxidant therapy may also be suggested. Immunosuppressive therapy to reduce the inflammation is an approach suggested by some, however only low certainty evidence supports using medications such as with in addition to the standard care to reduce mortality. It is also unknown if adding glucocorticoid with cyclophosphamide to the standard care has unwanted side effects such as increasing the risk of infection. Oxygen should not be administered unless SpO2 levels are below 92%, as high concentrations of oxygen intensify the toxic effects.

(1980). 9783540101918
Death may occur up to 30 days after ingestion.

Lung injury is a main feature of poisoning. Liver, heart, lung, and kidney failure can occur within several days to weeks that can lead to death up to 30 days after ingestion. Those who suffer large exposures are unlikely to survive. Chronic exposure can lead to lung damage, kidney failure, heart failure, and oesophageal strictures.Centers for Disease Control, Facts about Paraquat , accessed 13 October 2006. The mechanism underlying paraquat's toxic damage to humans is still unknown. The severe inflammation is thought to be caused by the generation of highly reactive oxygen species and species that results in . The oxidative stress may result in mitochondrial toxicity and the and lipid peroxidation which may be responsible for the organ damage. It is known that the alveolar of the lung selectively concentrate paraquat.

(2025). 9781437707557, Elsevier.
It has been reported that a small dose, even if removed from the stomach or spat out, can still cause death from fibrous tissue developing in the lungs, leading to .
(1997). 9780849326868, CRC Press.

Accidental deaths and suicides from paraquat ingestion are relatively common. For example, there are more than 5,000 deaths in China from paraquat poisoning every year in part leading to China's ban in 2017. Long-term exposures to paraquat would most likely cause lung and eye damage, but reproductive/fertility damage was not found by the EPA in their review.


"Paraquat pot"
During the late 1970s, a controversial program sponsored by the US government sprayed paraquat on cannabis fields in Mexico. Panic over Paraquat, , May 1, 1978 Following Mexican efforts to eradicate marijuana and poppy fields in 1975, the United States government helped by sending helicopters and other technological assistance. Helicopters were used to spray the herbicides paraquat and 2,4-D on the fields; marijuana contaminated with these substances began to show up in US markets, leading to debate about the program.

Whether any injury came about due to the inhalation of paraquat-contaminated marijuana is uncertain. A 1995 study found that "no lung or other injury in cannabis users has ever been attributed to paraquat contamination".Pronczuk de Garbino J, Epidemiology of paraquat poisoning, in: Bismuth C, and Hall AH (eds), Paraquat Poisoning: Mechanisms, Prevention, Treatment, pp. 37-51, New York: Marcel Dekker, 1995. Also a United States Environmental Protection Agency manual states: "... toxic effects caused by this mechanism have been either very rare or nonexistent. Most paraquat that contaminates cannabis is during smoking to , which is a product of combustion of the leaf material itself (including cannabis) and presents little toxic hazard."Reigart, J. Routt and Roberts, James R. Recognition and Management of Pesticide Poisonings, 5th edition. Washington, DC: United States Environmental Protection Agency, 1999. Book available online

In a study by Imperial Chemical Industries, rats that inhaled paraquat showed development of squamous metaplasia in their respiratory tracts after a couple of weeks. This study was included in a report given to the State Department by the Mitre Corporation. The U.S. Public Health Service stated that "this study should not be used to calculate the safe inhalation dose of paraquat in humans."


Use in suicide and murder
A large majority (93 percent) of fatalities from paraquat poisoning are , which occur mostly in developing countries. For instance, in from 1979 to 2001, 70 percent of suicides were by paraquat poisoning. Trinidad and Tobago is particularly well known for its incidence of suicides involving the use of Gramoxone (commercial name of paraquat). In southern , particularly in Penal, Debe from 1996 to 1997, 76 percent of suicides were by paraquat, 96 percent of which involved the over-consumption of alcohol such as rum. Paraquat and Suicide , Pestizid Aktions-Netzwerk e.V. (PAN Germany). Fashion celebrity died by suicide using paraquat in 2007. Paraquat is widely used as a suicide agent in developing countries because it is widely available at low cost. Further, the toxic dose is low (10 mL or 2 teaspoons is enough to kill). Campaigns exist to control or even ban paraquat, and there are moves to restrict its availability by requiring user education and the locking up of paraquat stores. When a 2011 South Korean law completely banned paraquat in the country, death by pesticide plummeted 46%, contributing to the decrease of the overall suicide rate.

The indiscriminate , which occurred in Japan in 1985, were carried out using paraquat as a poison. Paraquat was used in the UK in 1981 by a woman who poisoned her husband.

(2025). 9780854049653, Cambridge, UK : RSC Pub.. .
American serial killer Steven David Catlin killed two of his wives and his adoptive mother with paraquat between 1976 and 1984. In 2022, a 22-year-old woman, Greeshma Raj, was found guilty of using paraquat for murdering her boyfriend, Sharon Raj, in Kerala, India.


Parkinson's disease
According to the (2022), some of the measures to prevent Parkinson's disease include "banning of pesticides (e.g., paraquat and ) and chemicals (e.g., trichloroethylene) which have been linked to PD and develop safer alternatives as per WHO guidance" and "accelerate action to reduce levels of and exposure to air pollution, an important risk factor for PD". A 2011 study showed a link between paraquat use and Parkinson's disease in farm workers. A co-author of the paper said that paraquat increases production of certain oxygen derivatives that may harm cellular structures, and that people who used paraquat, or other pesticides with a similar mechanism of action, were more likely to develop Parkinson's. A 2013 meta-analysis published in Neurology found that "exposure to paraquat ... was associated with about a 2-fold increase in risk" of Parkinson's disease. A review in 2021 concluded that the available evidence does not support a causal conclusion. In 2022 and 2023, two reviews from India "decisively demonstrated that paraquat is a substantial stimulant of oxidative stress … and is associated with Parkinson's disease (PD)"; and stated that "From the studies we can consider that PQ and with its combined effects has tremendous contribution towards neurodegeneration in PD."

In the UK, the use of paraquat was banned in 2007, but the manufacture and export of the herbicide is still permitted. In April 2022, the BBC reported that some UK farmers had called for a ban on British production of paraquat, and stated that "There is no scientific consensus and many conflicting studies on any possible association between Paraquat and Parkinson's". In the US, a lawsuit against is ongoing; the company rejects the claims but has paid £187.5 million into a settlement fund. As of August 2024, more than 5,700 cases against Syngenta (manufacturer of Gramoxone) and Chevron (the former distributor) are pending in the paraquat multidistrict litigation in the US; the first of 10 bellwether trials will start in 2024. On April 15, 2025, attorneys representing plaintiffs in the multidistrict litigation entered into a settlement agreement. The settlement came as the first bellwether trial was six months away.

In August 2024, the British Columbia Supreme Court certified a class-action lawsuit against Syngenta on behalf of at least two plaintiffs who were diagnosed with Parkinson's after exposure to paraquat.

According to the , pesticide exposure has consistently been associated with the onset of Parkinson's disease.

  • A 17-year long, NIEHS-funded study of the links between Parkinson's disease, environment, and genes shows that some pesticides, including paraquat, , , , and several pesticides, including and , contribute to Parkinson's disease onset and progression.
  • People with Parkinson's disease who are exposed to a high level of ten different active ingredients in agricultural pesticides may see their motor and non-motor symptoms progress faster compared with those who are not, a 2022 study found.
  • Other NIEHS research found that people who occupationally used two pesticides, or paraquat, developed Parkinson's disease 2.5 times more often than non-users.
  • In addition, people exposed to pesticides in the home or garden may face a greater chance of developing Parkinson's disease.
  • Pesticides may directly or indirectly disrupt the biological pathways that normally protect dopaminergic neurons, the brain cells selectively attacked by the disease.
  • Some pesticides, like rotenone, can directly block the function of mitochondria, the structures that create energy to run the cell. NIEHS researchers showed in mice that disrupting mitochondria through exposure to rotenone early in development changed the epigenome—the chemical tags that turn genes on and off—in ways that persisted throughout life.
  • Other pesticides, like paraquat, have been found to increase production of that can damage cells.
Some people are more vulnerable to the harmful effects of pesticides because of their age or genetic makeup.
  • Many studies identified genetic variations that provide insight into why certain people appear to be at higher risk of developing Parkinson's.
  • Using data from a NIEHS-conducted agricultural health study, researchers found that Parkinson's risk from paraquat use was particularly high in people with a particular variant of a gene known as GSTT1.
  • Similarly, other research has indicated that people with lower levels of the PON1 gene, which is important for the metabolism of organophosphate pesticides, showed faster progression of the disease.
Further research into links between preventable exposures and Parkinson's disease, as well as preventative therapies, could help reduce the incidence of the disease. For example, using protective gloves and other hygiene practices reduced the risk of Parkinson's disease among farmers using paraquat, , and .


Further reading

External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time