Product Code Database
Example Keywords: the legend -sweatshirt $61-152
barcode-scavenger
   » » Wiki: Omphacite
Tag Wiki 'Omphacite'.
Tag

Omphacite is a member of the group of silicate minerals with formula: (, )(, 2+, )26. It is a variably deep to pale green or nearly colorless variety of . It normally appears in , which is the high-pressure of . Omphacite is the of Fe-bearing and . It crystallizes in the with prismatic, typically forms, though usually anhedral. Its can be P2/n or C2/c depending on the thermal history. It exhibits the typical near 90° pyroxene cleavage. It is brittle with of 3.29 to 3.39 and a of 5 to 6.


Formation and occurrence
Omphacite is the dominant phase in the in the Earth's upper mantle. The , which makes up oceanic crust, goes through ultrahigh-pressure and transforms to at depth ~60 km in the . The major mineral components of eclogite include omphacite, and high-pressure silica phases ( and ). As depth increases, the omphacite in eclogite gradually transforms to . Omphacite is stable up to 500 km depth in the Earth's interior. Considering the cold geotherm of , omphacite can be stable even in deeper mantle.

It also occurs in blueschist facies and ultrahigh-pressure metamorphic rocks. It is also found in eclogite xenoliths from as well as in crustal rocks metamorphosed at high pressures. Associated minerals in eclogites except the major minerals include , , , and . Minerals such as , lawsonite, , and occur with omphacite in facies metamorphic rocks. The name "jade", usually referring to rocks made of , is sometimes also applied to rocks consisting entirely of omphacite.


Chemical composition
Omphacite is the solid solution of Fe-bearing diopside (CaMgSi2O6) and jadeite (NaAlSi2O6). Depending on how much the coupled substitution of (Na, Al)-(Mg-Fe, Ca) happens, the chemical composition of omphacite varies continuously from pure diopside to pure jadeite. Due to the relatively small radius of (Na, Al) atoms, the volume linearly decreases as jadeite component increases. In addition, the coupled substitution also stiffens the crystals. The and modulus linearly increases as jadeite component increases.


Space group
Although omphacite is the solid solution of and , its may be different with them. The space group of diopside and jadeite is C2/c. However, omphacite can show both P2/n and C2/c space group. At low temperature, the partial coupled substitution of (Na, Al)-(Mg-Fe, Ca) in omphacite orders the atoms in the unit cell and makes omphacite shows a relatively low symmetry space group P2/n. As temperature increases, the movements of the atoms increase and finally the coupled substitution will not influence the order of the structure. When temperature reaches ~700–750 °C, the structure of omphacite becomes totally disordered and the space group will transform to C2/c. Natural omphacite may show C2/c structure even at room temperature if the omphacite crystal went through fast temperature decreasing.

Although the atomic positions in the two space groups have a subtle difference, it does not clearly change the physical properties of omphacite. The absolute are a little different for the two different space group, the compressibility and thermal expansion does not show obviously different within experimental uncertainties.


Etymology and history
It was first described in 1815 in the Münchberg Metamorphic complex, Franconia, , . The name omphacite derives from the omphax or unripe grape for the typical green color.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs