Neuroesthetics (or neuroaesthetics) is a recent sub-discipline of applied aesthetics. Empirical aesthetics takes a scientific approach to the study of aesthetic experience of art, music, or any object that can give rise to aesthetic judgments. Neuroesthetics is a term coined by Semir Zeki in 1999
One core question for the field is whether art or aesthetic preferences are guided by a set of scientific laws or principles. Additionally, the evolutionary rationale for the formation and characteristics of these principles are sought. It is believed that identification of the brain circuitry involved in aesthetic judgments (e.g., by using through the use of brain imaging) can help pinpoint the origin of these responses. Many scholars, including neuroscientists, remain skeptical of the reductive approach adopted by neuroaesthetics.
The subfield of Computational Neuroaesthetics has aimed to utilize machine learning algorithms in conjunction with neuroimaging data to predict what humans would find most aesthetically pleasing. This field was pioneered by Fechner and Birkhoff in 1933; however it was years later that technology caught up enough to test, and prove, their hypotheses that aesthetics could be measured in a mathematical way Real world applications of these models include recommending products via online advertisement. However, modeling serves the broader purpose of building scientific understanding and understanding the mechanisms guiding decision making and other cognitive processes by simulating the involved neural architecture.
Neuroaesthetics approaches can be either descriptive or . Descriptive neuroaesthetics refers to the practice of mapping properties of the brain onto aesthetic experiences. For example, if color is important to the experience of Fauvism, then it is likely that areas of the brain that process color will be engaged when looking at such art. The claims of descriptive neuroaesthetics are regarded as hypothesis-generating and are typically qualitative in nature. Experimental neuroaesthetics, like any experimental science, produces data that are quantitative and vetted statistically. Experimental neuroaesthetics tests Hypothesis, predicts results, and invites replication or falsification. The typical experimental methods used are those of cognitive neuroscience: fMRI, ERP, TMS, TDCS, and neuropsychology. Critics of neuroaesthetics typically target descriptive and not experimental neuroaesthetics.
The link between specific brain areas and artistic activity is of great importance to the field of neuroesthetics. This can be applied both to the ability to create and interpret art. A common approach to uncover the neural mechanisms is through the study of individuals, specifically artists, with neural disorders such as savant syndrome or some form of traumatic injury. The analysis of art created by these patients provides valuable insights to the brain areas responsible for capturing the essence of art.
The aesthetic enjoyment of individuals can be investigated using brain imaging experiments. When subjects are confronted with images of a particular level of aesthetics, the specific brain areas that are activated can be identified. It is argued that the sense of beauty and aesthetic judgment presupposes a change in the activation of the brain's reward system.
In 2004, Helmut Leder has developed a broad research program on the psychology of aesthetics and the arts. This program was introduced as a cognitive model of the appreciation of art in a paper published in the British Journal of Psychology. This model has served to frame many studies on the cognitive foundations of art, neuroaesthetics, product design, and web design, among other fields.
A crucial aspect of research lies in whether aesthetic judgment can be thought of as a bottom-up process driven by neural primitives or as a top-down process with high level cognition. Neurologists have had success researching primitives. However, there is a need to define higher level abstract philosophical concepts objectively with neural correlates. A phenomenon called embodied cognition allows art viewers to mentally place themselves inside the artwork, and feel not only as if they were there but feel how the creator of the art may have felt 1a. Embodied cognition is a theory that suggests sensory experiences, motor actions, and the environment play significant roles in shaping how we think, reason, and understand the world; our material world is just that, not a projection created by the mind. It is suggested that aesthetic experience is a function of the interaction between top-down, intentional orientation of attention and the bottom-up perceptual facilitation of image construction. In other words, because untrained persons automatically apply the object-identification habit to viewing artworks, top-down control to reduce this habit may be necessary to engage aesthetic perception. This suggests that artists would show different levels of activation than non-artists.
Aesthetic responses to different types of art and techniques has recently been explored. Cubism is the most radical departure from Western forms of art, with the proposed purpose of forcing the viewer to discover less unstable elements of the object to be represented. It eliminates interferences such as lighting and perspective angle to capture objects as they really are. This may be compared to how the brain maintains an object's identity despite varying conditions. modern art, representational, and impressionism has also been studied for the purpose of explaining visual processing systems. Yet aesthetic judgments exists in all domains, not just art.
The visual brain segregates visual elements like luminance, color, and motion, as well as higher order objects like faces, bodies, and landscapes. Aesthetic encounters engage these sensory systems. For example, gazing at Van Gogh's dynamic paintings evokes a subjective sense of movement and activates visual motion areas V5/MT+. Portraits activate the face area in the fusiform gyrus (FFA) and landscape paintings activate the place area in the parahippocampal gyrus (PPA). Beyond classifying visual elements, these sensory areas may also be involved in evaluating them. Beautiful faces activate the fusiform face and adjacent areas. The question of how much and what kind of valuation takes place in sensory cortices is an area of active inquiry.
Looking at paintings that depict actions also engages parts of people's . This engagement taps into the extended mirror neuron system. Mirror neurons, first discovered in monkeys, are neurons that respond to both the execution and perception of actions. A similar system exists in humans. This system resonates when people infer the intent of artistic gestures or observe the consequences of actions such as in Lucio Fontana cut canvases. This subtle motor engagement may represent an embodied element of our empathetic responses to visual art.
The pleasure that people derive from looking at beautiful objects automatically engages Reward system. For example, attractive faces activate the FFA and parts of the ventral striatum even when people are not thinking explicitly about the attractiveness of these faces. The orbito- and medial-frontal cortex, the ventral striatum, anterior cingulate and Insular cortex respond to beautiful visual images and the medial orbitofrontal cortex and adjacent cingulate cortex respond to different sources of pleasures including music and even architectural spaces.
Kirk and colleagues investigated the effects of expectations on neural responses. People rated abstract "art-like" images as more attractive if labeled as being from a museum than labeled as generated by a computer. This preference was accompanied by greater neural activity in the medial orbitofrontal and ventromedial prefrontal cortex. Thinking an image was a museum piece also produced activity in the entorhinal cortex, suggesting that people's expectations draw on memories that enhance (or probably also diminish) visual pleasure. Similarly, Lacey and colleagues found that people's ventral striatum and parts of the orbitofrontal cortex were more responsive to the "art status" than to the actual content of visual images. Huang and colleagues found that people have different neural responses when told that they are looking at an authentic or copied Rembrandt portrait. Authentic portraits evoked orbitofrontal activity, whereas copies evoked neural responses in the frontopolar cortex and the right precuneus.
Alternatively, according to the Neo-Kantian approach, "aesthetic pleasure arises from the fitting of predictive representations to sensory experiences". When our predictive representations align well with our sensory experiences, it results in a sense of aesthetic pleasure. This alignment might involve things like finding coherence, harmony, or resonance between what we expected and what we actually perceive.The implication of these studies is that context and knowledge beyond the sensory qualities of visual images demonstrably affects people's neural activity in aesthetic experiences.
"...the artist is in a sense, a neuroscientist, exploring the potentials and capacities of the brain, though with different tools. How such creations can arouse aesthetic experiences can only be fully understood in neural terms. Such an understanding is now well within our reach."He proposes two supreme laws of the visual brain:
Comparatively, a work of art captures the essence of an object. The creation of art itself may be modeled off of this primitive neural function. The process of painting for example involves distilling an object down to represent it as it really is, which differs from the way the eyes see it. Zeki also tried to represent the Platonic Ideal and the Hegelianism through the statement: forms do not have an existence without a brain and the ability for stored memory, referring to how artists such as Claude Monet could paint without knowing what the objects are in order to capture their true form.
This effect can be applied to human pattern recognition and aesthetic preference. Some artists attempt to capture the very essence of something in order to evoke a direct Emotion. In other words, they try to make a "super" rectangle to get the viewer to have an enhanced response. To capture the essence of something, an artist amplifies the differences of that object, or what makes it unique, to highlight the essential features and reduce redundant information. This process mimics what the visual areas of the brain have evolved to do and more powerfully activates the same neural mechanisms that were originally activated by the original object.
Some artists deliberately exaggerate creative components such as shading, highlights, and illumination to an extent that would never occur in a real image to produce a caricature. These artists may be unconsciously producing heightened activity in the specific areas of the brain in a manner that is not obvious to the conscious mind. A significant portion of the experience of art is not self-consciously reflected upon by audiences, so it is not clear whether the peak-shift thesis has any special explanatory power in understanding the creation and reception of art.
The viewer's attention is drawn towards this single area allowing one's attention to be focused on this source of information. Enhancements introduced by the artist more carefully noted resulting in the amplification of limbic system activation and reinforcement.
An artist can make use of this phenomenon by teasing the system. This allows for temporary binding to be communicated by a signal to the limbic system for reinforcement which is a source of the aesthetic experience.
In theory, if an artist is trying to please the eye, they should avoid such coincidences. However, in certain applications, the violation of this principle can also produce a pleasing effect.
Support for this view is highlighted by the symptoms of Capgras delusion, where sufferers experience reduced facial recognition due to impairments in the connections from the inferotemporal cortex to the amygdala, which is responsible for emotions. The result is that a person no longer experiences the warm fuzzy feeling when presented with a familiar face. A person's "glow" is lost through what is suggested as due to the lack of limbic activation.
Physiological phenomenon can explain several aspects of art appreciation. Different extrastriate areas of the visual cortex may have evolved to extract correlations of different visual features. The discovery and linking of various visual stimuli is facilitated and reinforced by direct connections from these areas to Limbic system. Additionally, art may be most appealing if it produces heightened activity in a single dimension rather than redundant activation of multiple modules, restricted by the allocation of attentional resources. In experimentation to determine specific areas, many researchers allow the viewer to decide the aesthetic appeal prior to the use of imaging techniques to account for the varying perceptions of beauty. When individuals contemplate the aesthetic appeal, different neural processes are engaged than when pragmatically viewing an image. However, processes of object identification and aesthetic judgment are involved simultaneously in the overall perception of aesthetics.
Conversely, activity in the motor cortex showed the opposite pattern. Additionally, the medial OFC has been found to respond aesthetics in terms of the context of which it is presented, such as text or other descriptions about the artwork. The current evidence linking the OFC to attributed hedonistic values across gustatory, olfactory, and visual modalities, suggests that the OFC is a common center for the assessment of a stimulus's value. The perception of aesthetics for these areas must be due to the activation of the brain's reward system with a certain intensity.
Additionally, the prefrontal dorsalateral cortex (PDC) is selectively activated only by stimuli considered beautiful whereas prefrontal activity as a whole is activated during the judgment of both pleasing and unpleasing stimuli. The prefrontal cortex may be generally activated for directing the attention of the cognitive and perceptual mechanisms towards aesthetic perception in viewers untrained in visual arts. In other words, related directly to a person viewing art from an aesthetic perception due to the top-down control of their cognition. The lateral prefrontal cortex is shown to be linked to higher order self-referential procession and the evaluation of internally generated information. The left lateral PFC, Brodmann area 10, may be involved in maintaining attention on the execution of internally generated goals associated with approaching art from an aesthetic orientation.
Broca's Area, also in the Prefrontal cortex is impaired in many individuals with Post Traumatic Stress Disorder (PTSD). Dysfunction in this area leads to deficits in speech production; in this case the inability to verbally process a traumatic event(s). The process of making art allows those affected to "access pre-language areas of the brain" by creating their own symbolic imagery and connecting with others through this. Directing attention towards aesthetics may have evolutionary significance.
This holds importance in the field because as Ramachandran also speculated, object recognition and the search for meaning can evoke a pleasant emotional response. The motor cortex was also shown to be involved in aesthetic perception. However, it displayed opposite trends of activation from the OFC. It may be a common correlate for the perception of emotionally charged stimuli despite its previously known roles. Several other areas of the brain were shown to be slightly activated during certain studies such as the anterior cingulate cortex, previously known for its involvement in the feeling of romance, and the left Parietal lobe, whose purpose may be to direct spatial attention.
Different artistic styles may also be processed differently by the brain. In a study between filtered forms of Abstract art and representation art, the bilateral Occipital lobe gyri, left cingulate sulcus, and bilateral fusiform gyrus showed increased activation with increased preference when viewing art. However, activation in the bilateral occipital gyri may be caused by the large processing requirements placed on the visual system when viewing high levels of visual detail in artwork such as representational paintings. Several areas of the brain have been shown to respond particularly to forms representational art perhaps due to the brain's ability to make object associations and other functions relating to attention and memory. This form of stimuli leads to increased activation in the left frontal lobe and bilaterally in the parietal and . Also, the left superior parietal lobule, Brodmann's area 7, has been shown to play a role in active image construction during the viewing of art specifically containing indeterminate forms such as soft edge paintings. Bottom up processes such as edge detection and the exploration of visual stimuli are engaged during this type of aesthetic perception. These roles are consistent with previously known parietal lobe responsibilities in spatial cognition and visual imagery.
Additional research carries the assumption that our emotions are engaged when viewing or interacting with something related to aesthetics such as architecture, fashion or art however, the argument has been made by Alexis Makin, a researcher on visual neuroscience, that we can not yet encapsulate the neuroscience and psychological experience that occurs when having an aesthetic experience. Thus insinuating that we can not attribute our experience of aesthetics to that of something on the neurophysiological level. In negation to this, Skov and his colleagues make the argument that he emotional response elicited and the perceptual cues engaged in aesthetic experiences is enough evidence to ascertain the existence of empirical aesthetics. The majority of studies on neuroaesthetics have measured neural responses to traditional and Western art styles. One journal suggested rerunning these experiments using "traditional Chinese painting, Tang poetry, Chinese courtyard landscapes". Limiting the scope of cultural stimuli creates bias in results because factors such as familiarity may affect participant responses.
Art and music therapy are two proposed clinical applications for neuroaesthetics. Individuals with a variety of conditions including, but not limited to, Traumatic Brain Injury (TBI), and Neurodegenerative conditions such as Parkinsons, have shown symptom improvement after many types of art therapy and art exposure.
The advancements of biotechnology over time should allow neurophysiological responses to be recorded outside of the laboratory setting4a. Future directions should measure these responses while participants take part in immersive exhibits, especially those involving immersive multimedia exhibits such as TeamLab Planets TOKYO https://en.wikipedia.org/wiki/TeamLab_(art_collective)
Future directions and related fields
See also
Further reading
External links
|
|