Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or , which are called nanorobots or simply nanobots, whose components are at or near the scale of a nanometer (10−9 meters). More specifically, nanorobotics (as opposed to microrobotics) refers to the nanotechnology engineering discipline of designing and building nanorobots with devices ranging in size from 0.1 to 10 and constructed of Nanoscopic scale or molecular components. The terms nanobot, nanoid, nanite, nanomachine and nanomite have also been used to describe such devices currently under research and development.
are largely in the research and development phase, but some primitive molecular machines and have been tested. An example is a sensor having a switch approximately 1.5 nanometers across, able to count specific molecules in the chemical sample. The first useful applications of nanomachines may be in nanomedicine. For example, biological machines could be used to identify and destroy cancer cells. Another potential application is the detection of toxic chemicals, and the measurement of their concentrations, in the environment. Rice University has demonstrated a Nanocar developed by a chemical process and including Buckminsterfullerenes (buckyballs) for wheels. It is actuated by controlling the environmental temperature and by positioning a scanning tunneling microscope tip.
Another definitionEhud Gazit, Plenty of room for biology at the bottom: An introduction to bionanotechnology. Imperial College Press, 2007, is a robot that allows precise interactions with nanoscale objects, or can manipulate with Nanoscopic scale resolution. Such devices are more related to microscopy or scanning probe microscopy, instead of the description of nanorobots as molecular machines. Using the microscopy definition, even a large apparatus such as an atomic force microscope can be considered a nanorobotic instrument when configured to perform nanomanipulation. For this viewpoint, macroscale robots or microrobots that can move with nanoscale precision can also be considered nanorobots.
Since nano-robots would be microscopic in size, it would probably be necessary for very large numbers of them to work together to perform microscopic and macroscopic tasks. These nano-robot swarms, both those unable to replicate (as in utility fog) and those able to replicate unconstrained in the natural environment (as in grey goo and synthetic biology), are found in many science fiction stories, such as the Borg nano-probes in Star Trek and The Outer Limits episode "The New Breed".
Some proponents of nano-robotics, in reaction to the grey goo scenarios that they earlier helped to propagate, hold the view that nano-robots able to replicate outside of a restricted factory environment do not form a necessary part of a purported productive nanotechnology, and that the process of self-replication, were it ever to be developed, could be made inherently safe. They further assert that their current plans for developing and using molecular manufacturing do not in fact include free-foraging replicators.
Zyvex: "Self replication and nanotechnology": "artificial self replicating systems will only function in carefully controlled artificial environments ... While self replicating systems are the key to low cost, there is no need (and little desire) to have such systems function in the outside world. Instead, in an artificial and controlled environment, they can manufacture simpler and more rugged systems that can then be transferred to their final destination. ... The resulting medical device will be simpler, smaller, more efficient and more precisely designed for the task at hand than a device designed to perform the same function and self replicate. ... A single device able to do both would be harder to design and less efficient."
"Foresight Guidelines for Responsible Nanotechnology Development" "Autonomous self-replicating assemblers are not necessary to achieve significant manufacturing capabilities."
"The simplest, most efficient, and safest approach to productive nanosystems is to make specialized nanoscale tools and put them together in factories big enough to make what is needed. ... The machines in this would work like the conveyor belts and assembly robots in a factory, doing similar jobs. If you pulled one of these machines out of the system, it would pose no risk, and be as inert as a light bulb pulled from its socket."
A detailed theoretical discussion of nanorobotics, including specific design issues such as sensing, power communication, navigation, manipulation, Robot locomotion, and onboard computation, has been presented in the medical context of nanomedicine by Robert Freitas. Some of these discussions remain at the level of unbuildable generality and do not approach the level of detailed engineering.
Such nanorobots are not dependent on chemical reactions to fuel the propulsion. A triaxial Helmholtz coil can provide directed rotating field in space. It was shown how such nanomotors can be used to measure viscosity of non-newtonian fluids at a resolution of a few microns. This technology promises creation of a viscosity map inside cells and the extracellular milieu. Such nanorobots move in blood. Researchers have managed to controllably move such nanorobots inside cancer cells allowing them to trace out patterns inside a cell. Nanorobots moving through the tumor microenvironment have demonstrated the presence of sialic acid in the cancer-secreted extracellular matrix.
Magnetic helical nanorobots translate a rotational motion into translational movement through a fluid in low Reynolds number environments. These nanorobots have been inspired by naturally occurring microorganisms such as flagella, cilia, and Escheric coli (otherwise known as E. coli) which rotate in a helical wave.
(Equation 1)
(Equation 2)
Equation one indicates that, increasing the volume of the magnetic material will increase the force experienced by the material proportionally. If the volume is doubled, the force will also double, assuming the magnetization (M) and the gradient of the magnetic field (∇B) remain constant. This would be the same for the torque of the magnetic material too since it is proportional to the volume.
This increase in magnetic dipoles enhances the overall magnetic response of the material to an external magnetic field, resulting in greater force and torque. Hence when the magnetic material gets bigger than the helical swimmer it can move faster.
at the initial position. After the magnet manipulator turns 45°, the magnetic field near the head position of the square magnet turns at an angle around the x-axis, as shown in
the figure below. If the square magnet stays in its initial position, it will be subject to a magnetic torque around the x-axis
Thus, the helical swimmer will follow the magnetic field. If the magnet manipulator rotates one turn, the magnetic field near the head position of the swimmer projected on the plane yoz rotates a whole turn around the x-axis. This results in the helical shape to move, resulting in propulsion as follows:
This propulsion helps the helical structure to rotate with the angle of the force. As a result, the magnetic robot rotates around the x-axis by the action of the rotating magnetic field.
Using magnetic helical micro/nanorobots for cell transport can also lead to opportunities in solving male infertility, repairing damaged tissue, and cell assembly. In 2015, a helical micro-/nanomotor with a holding ring on the head was used to successfully capture and transport sperm cells with motion deficiencies. The helix device would approach the sperm cell’s tail and confine it with the body of the micro-/nanomotor. It would then use the holding ring to loosely capture the head of the sperm cell to prevent escape. After reaching the target location, the sperm cell would be released into the membrane of the oocyte by reversing the rotation of the helix device. This strategy was considered to be an efficient strategy while also reducing risk of damage to the sperm cells.
This 3D printing process has many benefits. First, it increases the overall accuracy of the printing process. Second, it has the potential to create functional segments of a nanorobot. The 3D printer uses a liquid resin, which is hardened at precisely the correct spots by a focused laser beam. The focal point of the laser beam is guided through the resin by movable mirrors and leaves behind a hardened line of solid polymer, just a few hundred nanometers wide. This fine resolution enables the creation of intricately structured sculptures as tiny as a grain of sand. This process takes place by using photoactive resins, which are hardened by the laser at an extremely small scale to create the structure. This process is quick by nanoscale 3D printing standards. Ultra-small features can be made with the 3D micro-fabrication technique used in multiphoton photopolymerisation. This approach uses a focused laser to trace the desired 3D object into a block of gel. Due to the nonlinear nature of photo excitation, the gel is cured to a solid only in the places where the laser was focused while the remaining gel is then washed away. Feature sizes of under 100 nm are easily produced, as well as complex structures with moving and interlocked parts.
In spite of the fast development of nanorobots, most of the nanorobots designed for drug delivery purposes, there is "still a long way to go before their commercialization and clinical applications can be achieved."
In such plans, future medical nanotechnology is expected to employ nanorobots injected into the patient to perform work at a cellular level. Such nanorobots intended for use in medicine should be non-replicating, as replication would needlessly increase device complexity, reduce reliability, and interfere with the medical mission.
Nanotechnology provides a wide range of new technologies for developing customized means to optimize the delivery of pharmaceutical drugs. Today, harmful side effects of treatments such as chemotherapy are commonly a result of drug delivery methods that don't pinpoint their intended target cells accurately. Researchers at Harvard and MIT, however, have been able to attach special RNA strands, measuring nearly 10 nm in diameter, to nanoparticles, filling them with a chemotherapy drug. These RNA strands are attracted to . When the nanoparticle encounters a cancer cell, it adheres to it, and releases the drug into the cancer cell. This directed method of drug delivery has great potential for treating cancer patients while avoiding negative effects (commonly associated with improper drug delivery). The first demonstration of nanomotors operating in living organisms was carried out in 2014 at University of California, San Diego. MRI-guided are one potential precursor to nanorobots.
Another useful application of nanorobots is assisting in the repair of tissue cells alongside white blood cells.Casal, Arancha et al. (2004) "Nanorobots As Cellular Assistants in Inflammatory Responses". nanorobotdesign.com Recruiting inflammatory cells or white blood cells (which include neutrophil granulocytes, , , and ) to the affected area is the first response of tissues to injury.C. Janeway (ed.) (2001) ImmunoBiology, the Immune System in Health and Disease. Garland Pub; 5th ed. . Because of their small size, nanorobots could attach themselves to the surface of recruited white cells, to squeeze their way out through the walls of and arrive at the injury site, where they can assist in the tissue repair process. Certain substances could possibly be used to accelerate the recovery.
The science behind this mechanism is quite complex. Passage of cells across the blood endothelium, a process known as transmigration, is a mechanism involving engagement of cell surface receptors to adhesion molecules, active force exertion and Vasodilation of the vessel walls and physical deformation of the migrating cells. By attaching themselves to migrating inflammation cells, the robots can in effect "hitch a ride" across the blood vessels, bypassing the need for a complex transmigration mechanism of their own.
, in the United States, Food and Drug Administration (FDA) regulates nanotechnology on the basis of size.FDA (2011) Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology, Guidance for Industry, Draft Guidance.
Nanocomposite particles that are controlled remotely by an electromagnetic field was also developed. This series of nanorobots that are now enlisted in the Guinness World Records, can be used to interact with the biological cells. Scientists suggest that this technology can be used for the treatment of cancer.
Magnetic nanorobots have demonstrated capabilities to prevent and treat antimicrobial resistant bacteria. Application of nanomotor implants have been proposed to achieve thorough disinfection of the dentine.
Nanites are used in a number of episodes in the television series Travelers. They be programmed and injected into injured people to perform repairs, and first appear in season 1.
Nanites also feature in the 2016 expansion for the video game Destiny in which SIVA, a self-replicating nanotechnology is used as a weapon.
Nanites (referred to more often as nanomachines) are often referenced in Konami's Metal Gear series, being used to enhance and regulate abilities and body functions.
In the Star Trek franchise TV shows nanites play an important plot device. Starting with "" in the third season of , Borg Nanoprobes perform the function of maintaining the Borg cybernetic systems, as well as repairing damage to the organic parts of a Borg. They generate new technology inside a Borg when needed, as well as protecting them from many forms of disease.
Nanites play a role in the Deus Ex video game series, being the basis of the nano-augmentation technology which gives augmented people superhuman abilities.
Nanites are also mentioned in the Arc of a Scythe book series by Neal Shusterman and are used to heal all nonfatal injuries, regulate bodily functions, and considerably lessen pain.
Nanites are also an integral part of Stargate SG1 and Stargate Atlantis, where grey goo scenarios are portrayed.
Nanomachines are central to the plot of the Silo book series, in which they are used as a weapon of mass destruction propagated via the air, and enter undetected into the human body where, when receiving a signal, they kill the recipient. They are then used to wipe out the majority of the human race.
Cultural references
See also
Further reading
External links
|
|