Product Code Database
Example Keywords: winter -super $43-127
   » » Wiki: Nano-thermite
Tag Wiki 'Nano-thermite'.
Tag

Nano-thermite or super-thermite is a metastable intermolecular composite (MIC) characterized by a particle size of its main constituents, a metal fuel and , under 100 . This allows for high and customizable reaction rates. Nano-thermites contain an and a , which are intimately mixed on the nanometer scale. MICs, including nano-thermitic materials, are a type of reactive materials investigated for military use, as well as for general applications involving propellants, explosives, and .

What distinguishes MICs from traditional is that the oxidizer and a reducing agent, normally and , are in the form of extremely fine powders (). This dramatically increases the reactivity relative to -sized powder thermite. As the mass transport mechanisms that slow down the burning rates of traditional thermites are not so important at these scales, the reaction proceeds much more quickly.


Potential uses
Historically, pyrotechnic or explosive applications for traditional thermites have been limited due to their relatively slow energy release rates. Because nanothermites are created from reactant particles with proximities approaching the atomic scale, energy release rates are far greater.

MICs or super-thermites are generally developed for military use, , explosives, incendiary devices, and . Research into military applications of nano-sized materials began in the early 1990s. Because of their highly increased reaction rate, nano-thermitic materials are being studied by the U.S. military with the aim of developing new types of bombs several times more powerful than conventional explosives. Nanoenergetic materials can store more energy than conventional energetic materials and can be used in innovative ways to tailor the release of this energy. Thermobaric weapons are one potential application of nanoenergetic materials.


Types
There are many possible thermodynamically stable fuel-oxidizer combinations. Some of them are:
  • -molybdenum(VI) oxide
  • Aluminium-copper(II) oxide
  • Aluminium-iron(II,III) oxide
  • -potassium permanganate
  • Aluminium-potassium permanganate
  • Aluminium-bismuth(III) oxide
  • Aluminium-tungsten(VI) oxide hydrate
  • Aluminium- (typically )
  • - (burns to titanium diboride, which belongs to a class of compounds called intermetallic composites).

In military research, aluminium-, aluminium- and aluminium-copper(II) oxide have received considerable attention. Other compositions tested were based on nanosized and with . or other fluoropolymer can be used as a binder for the composition. Its reaction with the aluminium, similar to magnesium/teflon/viton thermite, adds energy to the reaction.

(2003). 9780309086011, Books.nap.edu. .
Of the listed compositions, that with potassium permanganate has the highest .

The most common method of preparing nanoenergetic materials is by ultrasonification in quantities of less than 2g. Some research has been developed to increase production scales. Due to the very high electrostatic discharge (ESD) sensitivity of these materials, sub 1 gram scales are currently typical.


Production
Nanoaluminum, or ultra fine grain (UFG) aluminum, powders are a key component of most nano-thermitic materials. A method for producing this material is the dynamic gas-phase condensation method, pioneered by Wayne Danen and Steve Son at Los Alamos National Laboratory. A variant of the method is being used at the Indian Head Division of the Naval Surface Warfare Center. Another method for production is electrothermal synthesis, developed by NovaCentrix, which uses a pulsed plasma arc to vaporize the aluminum. The powders made by the dynamic gas-phase condensation and the electrothermal synthesis processes are indistinguishable. A critical aspect of the production is the ability to produce particles of sizes in the tens of nano-meter range, as well as with a limited distribution of particle sizes. In 2002, the production of nano-sized aluminum particles required considerable effort, and commercial sources for the material were limited.

An application of the method, developed by Randall Simpson, Alexander Gash and others at the Lawrence Livermore National Laboratory, can be used to make the actual mixtures of nano-structured composite energetic materials. Depending on the process, MICs of different density can be produced. Highly porous and uniform products can be achieved by super-critical extraction.

The most common types of production are in liquids or via resonant acoustic mixing. However, more complicated methods like the ones previously mentioned are used.


Ignition
As with all explosives, research into control yet simplicity has been a goal of research into nanoscale explosives. Some can be ignited with pulses.

MICs have been investigated as a possible replacement for lead (e.g. , ) in and . Compositions based on Al-Bi2O3 tend to be used. may be optionally added.

powder can be added to nano explosives. has a relatively low combustion rate and a high enthalpy of combustion.

The products of a thermite reaction, resulting from ignition of the nano-thermitic mixture, are usually metal oxides and elemental metals. At the temperatures prevailing during the reaction, the products can be solid, liquid or gaseous, depending on the components of the mixture.


Hazards
Like conventional thermite, super thermite reacts at very high temperature and is difficult to extinguish. The reaction produces dangerous ultra-violet (UV) light, requiring that the reaction not be viewed directly or that special eye protection (for example, a welder's mask) be worn.

In addition, super thermites are very sensitive to electrostatic discharge (ESD). Surrounding the metal oxide particles with carbon nanofibers may make nanothermites safer to handle.


See also


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time