Mosses are small, non-vascular in the taxonomic phylum Bryophyta (, ) sensu stricto. Bryophyta ( sensu lato, Schimp. 1879) may also refer to the parent group , which comprise Marchantiophyta, mosses, and . Mosses typically form dense green clumps or mats, often in damp or shady locations. The individual plants are usually composed of simple leaf that are generally only one cell thick, attached to a plant stem that may be branched or unbranched and has only a limited role in conducting water and nutrients. Although some species have conducting tissues, these are generally poorly developed and structurally different from similar tissue found in vascular plants. Mosses do not have and after fertilisation develop with unbranched stalks topped with single capsules containing sporangium. They are typically tall, though some species are much larger. Dawsonia, the tallest moss in the world, can grow to in height. There are approximately 12,000 species.
Mosses are commonly confused with liverworts, hornworts and .Lichens of North America, Irwin M. Brodo, Sylvia Duran Sharnoff, , 2001 Although often described as non-vascular plants, many mosses have advanced vascular systems. Like liverworts and hornworts, the haploid gametophyte generation of mosses is the dominant phase of the life cycle. This contrasts with the pattern in all vascular plants (seed plants and pteridophytes), where the diploid sporophyte generation is dominant. Lichens may superficially resemble mosses, and sometimes have common names that include the word "moss" (e.g., "reindeer moss" or "Iceland moss"), but they are fungal symbioses and not related to mosses.
The main commercial significance of mosses is as the main constituent of peat (mostly the genus Sphagnum), although they are also used for decorative purposes, such as in gardens and in the florist trade. Traditional uses of mosses included as insulation and for the ability to absorb liquids up to 20 times their weight. Mosses are keystone species and benefit habitat restoration and reforestation.
Moss gametophytes have stems which may be simple or branched and upright (acrocarp) or prostrate (pleurocarp). The early divergent classes Takakiopsida, Sphagnopsida, Andreaeopsida and Andreaeobryopsida either lack or have pseudostomata that do not form pores. In the remaining classes, stomata have been lost more than 60 times. Their leaves are simple, usually only a single layer of cells with no internal air spaces, often with thicker midribs (nerves). The nerve can run beyond the edge of the leaf tip, termed excurrent. The tip of the leaf blade can be extended as a hair point, made of colourless cells. These appear white against the dark green of the leaves. The edge of the leaf can be smooth or it may have teeth. There may be a distinct type of cell defining the edge of the leaf, distinct in shape and/or colour from the other leaf cells.
Moss has threadlike rhizoids that anchor them to their substrate, comparable to root hairs rather than the more substantial root structures of spermatophytes.
The moss life-cycle starts with a haploid spore that germinates to produce a protonema ( pl. protonemata), which is either a mass of thread-like filaments or thalloid (flat and thallus-like). Massed moss protonemata typically look like a thin green felt, and may grow on damp soil, tree bark, rocks, concrete, or almost any other reasonably stable surface. This is a transitory stage in the life of a moss, but from the protonema grows the gametophore ("gamete-bearer") that is structurally differentiated into stems and leaves. A single mat of protonemata may develop several gametophore shoots, resulting in a clump of moss.
From the tips of the gametophore stems or branches develop the sex organs of the mosses. The female organs are known as archegonia ( sing. archegonium) and are protected by a group of modified leaves known as the perichaetum (plural, perichaeta). The archegonia are small flask-shaped clumps of cells with an open neck (venter) down which the male sperm swim. The male organs are known as antheridia ( sing. antheridium) and are enclosed by modified leaves called the perigonium ( pl. perigonia). The surrounding leaves in some mosses form a splash cup, allowing the sperm contained in the cup to be splashed to neighboring stalks by falling water droplets.
Gametophore tip growth is disrupted by fungal chitin. Galotto et al., 2020 applied chitooctaose and found that tips detected and responded to this chitin derivative by changing gene expression. They concluded that this defense response was probably conserved from the most recent common ancestor of and tracheophytes. Orr et al., 2020 found that the of growing tip cells were structurally similar to F-actin and served a similar purpose.
Mosses can be either dioicous (compare dioecious in seed plants) or monoicous (compare monoecious). In dioicous mosses, male and female sex organs are borne on different gametophyte plants. In monoicous (also called autoicous) mosses, both are borne on the same plant. In the presence of water, sperm from the antheridia swim to the archegonia and fertilisation occurs, leading to the production of a diploid sporophyte. The sperm of mosses is biflagellate, i.e. they have two flagellae that aid in propulsion. Since the sperm must swim to the archegonium, fertilisation cannot occur without water. Some species (for example Mnium hornum or several species of Polytrichum) keep their antheridia in so called 'splash cups', bowl-like structures on the shoot tips that propel the sperm several decimeters when water droplets hit it, increasing the fertilization distance.
After fertilisation, the immature sporophyte pushes its way out of the archegonial venter. It takes several months for the sporophyte to mature. The sporophyte body comprises a long stalk, called a seta, and a capsule capped by a cap called the operculum. The capsule and operculum are in turn sheathed by a haploid calyptra which is the remains of the archegonial venter. The calyptra usually falls off when the capsule is mature. Within the capsule, spore-producing cells undergo meiosis to form haploid spores, upon which the cycle can start again. The mouth of the capsule is usually ringed by a set of teeth called peristome. This may be absent in some mosses.
Most mosses rely on the wind to disperse the spores. In the genus Sphagnum the spores are projected about off the ground by compressed air contained in the capsules; the spores are accelerated to about 36,000 times the earth's gravitational acceleration g.
It has recently been found that microarthropods, such as springtails and mites, can effect moss fertilization and that this process is mediated by moss-emitted scents. Male and female fire moss, for example, emit different and complex volatile organic scents. Female plants emit more compounds than male plants. Springtails were found to choose female plants preferentially, and one study found that springtails enhance moss fertilization, suggesting a scent-mediated relationship analogous to the plant-pollinator relationship found in many seed plants. The stinkmoss species Splachnum sphaericum develops insect pollination further by attracting flies to its sporangia with a strong smell of carrion, and providing a strong visual cue in the form of red-coloured swollen collars beneath each spore capsule. Flies attracted to the moss carry its spores to fresh herbivore dung, which is the favoured habitat of the species of this genus.
In many mosses, e.g., Ulota phyllantha, green vegetative structures called gemmae are produced on leaves or branches, which can break off and form new plants without the need to go through the cycle of fertilization. This is a means of asexual reproduction, and the genetically identical units can lead to the formation of cloning populations.
Having the males growing as dwarfs on the female is expected to increase the fertilization efficiency by minimizing the distance between male and female reproductive organs. Accordingly, it has been observed that fertilization frequency is positively associated with the presence of dwarf males in several phyllodioicy species.
Dwarf males occur in several unrelated lineages and may be more common than previously thought. For example, it is estimated that between one quarter and half of all dioicy pleurocarpous have dwarf males.
The mosses, (Bryophyta sensu stricto), are divided into eight classes:
division Bryophyta
| |
The current phylogenetics and composition of the Bryophyta.Buck, William R. & Bernard Goffinet. (2000). "Morphology and classification of mosses", pages 71–123 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press). . |
Six of the eight classes contain only one or two genera each. Polytrichopsida includes 23 genera, and Bryopsida includes the majority of moss diversity with over 95% of moss species belonging to this class.
The Sphagnopsida, the peat-mosses, comprise the two living genera Ambuchanania and Sphagnum, as well as fossil taxa. Sphagnum is a diverse, widespread, and economically important one. These large mosses form extensive acidic bogs in peat swamps. The leaves of Sphagnum have large dead cells alternating with living photosynthetic cells. The dead cells help to store water. Aside from this character, the unique branching, thallose (flat and expanded) protonema, and explosively rupturing sporangium place it apart from other mosses.
Andreaeopsida and Andreaeobryopsida are distinguished by the biseriate (two rows of cells) rhizoids, multiseriate (many rows of cells) protonema, and sporangium that splits along longitudinal lines. Most mosses have capsules that open at the top.
Polytrichopsida have leaves with sets of parallel lamellae, flaps of chloroplast-containing cells that look like the fins on a heat sink. These carry out photosynthesis and may help to conserve moisture by partially enclosing the gas exchange surfaces. The Polytrichopsida differ from other mosses in other details of their development and anatomy too, and can also become larger than most other mosses, with e.g., Polytrichum commune forming cushions up to high. The tallest land moss, a member of the Polytrichidae is probably Dawsonia superba, a native to New Zealand and other parts of Australasia.
Recent research shows that ancient moss could explain why the Ordovician ice ages occurred. When the ancestors of today's moss started to spread on land 470 million years ago, they absorbed CO2 from the atmosphere and extracted minerals by secreting organic acids that dissolved the rocks they were growing on. These chemically altered rocks in turn reacted with the atmospheric CO2 and formed new carbonate rocks in the ocean through the weathering of calcium and magnesium ions from silicate rocks. The weathered rocks also released significant amounts of phosphorus and iron which ended up in the oceans, where it caused massive algal blooms, resulting in organic carbon burial, extracting more carbon dioxide from the atmosphere. Small organisms feeding on the nutrients created large areas without oxygen, which caused a mass extinction of marine species, while the levels of CO2 dropped all over the world, allowing the formation of ice caps on the poles.
Mosses live in almost every terrestrial habitat type on Earth.
Moss are and require sunlight to perform photosynthesis. In most areas, mosses grow chiefly in moist, shaded areas, such as wooded areas and at the edges of streams, but shade tolerance varies by species.
Different moss species grow on different substrates as well. Moss species can be classed as growing on: rocks, exposed mineral soil, disturbed soils, acid soil, calcareous soil, cliff seeps and waterfall spray areas, streamsides, shaded soil, downed logs, burnt stumps, tree trunk bases, upper tree trunks, and tree branches or in . Moss species growing on or under trees are often specific about the species of trees they grow on, such as preferring Pinophyta over broadleaf trees, over , or vice versa. While mosses often grow on trees as epiphytes, they are never parasitic on the tree.
Mosses are also found in cracks between paving stones in damp city streets, and on roofs. Some species adapted to disturbed, sunny areas are well adapted to urban conditions and are commonly found in cities. Examples would be Rhytidiadelphus squarrosus, a garden weed in Vancouver and Seattle areas; Bryum argenteum, the cosmopolitan sidewalk moss, and Ceratodon purpureus, red roof moss, another cosmopolitan species. A few species are wholly aquatic, such as Fontinalis antipyretica, common water moss; and others such as Sphagnum inhabit bogs, marshes and very slow-moving waterways. Such aquatic or semi-aquatic mosses can greatly exceed the normal range of lengths seen in terrestrial mosses. Individual plants or more long are common in Sphagnum species for example. But even aquatic species of moss and other bryophytes needs their mature capsules to be exposed to air by seta elongation or seasonal lowering of water level to be able to reproduce.
Wherever they occur, mosses require liquid water for at least part of the year to complete fertilisation. Many mosses can survive desiccation, sometimes for months, returning to life within a few hours of rehydration. Mosses in arid habitats, such as the moss Syntrichia caninervis, have adaptations for collecting non-rainfall sources of moisture like dew and fog, capturing condensation from the air.
It is generally believed that in the Northern Hemisphere, the north side of trees and rocks will generally have more luxuriant moss growth on average than other sides.
Some mosses grow underwater, or completely waterlogged. Many prefer well-drained locations. There are mosses that preferentially grow on rocks and tree trunks of various chemistries.
Growing moss from spores is even less controlled. Moss spores fall in a constant rain on exposed surfaces; those surfaces which are hospitable to a certain species of moss will typically be colonised by that moss within a few years of exposure to wind and rain. Materials which are porous and moisture retentive, such as brick, wood, and certain coarse concrete mixtures, are hospitable to moss. Surfaces can also be prepared with acidic substances, including buttermilk, yogurt, urine, and gently puréed mixtures of moss samples, water and ericaceous compost.
In the cool, humid, cloudy Pacific Northwest, moss is sometimes allowed to grow naturally as a moss lawn, one that needs little or no mowing, fertilizing or watering. In this case, grass is considered to be the weed. Landscapers in the Seattle area sometimes collect boulders and downed logs growing mosses for installation in gardens and landscapes. Woodland gardens in many parts of the world can include a carpet of natural mosses. The Bloedel Reserve on Bainbridge Island, Washington State, is famous for its moss garden. The moss garden was created by removing shrubby underbrush and herbaceous groundcovers, thinning trees, and allowing mosses to fill in naturally.
Moss growth can be inhibited by a number of methods:
The application of products containing ferrous sulfate or ferrous ammonium sulfate will kill moss; these ingredients are typically in commercial moss control products and . Sulfur and iron are essential nutrients for some competing plants like grasses. Killing moss will not prevent regrowth unless conditions favorable to their growth are changed.
Sámi people, North American tribes, and other circumpolar peoples used mosses for bedding. Mosses have also been used as insulation both for dwellings and in clothing. Traditionally, dried moss was used in some Nordic countries and Russia as an insulator between logs in , and tribes of the northeastern United States and southeastern Canada used moss to fill chinks in wooden longhouses. Circumpolar and alpine peoples have used mosses for insulation in boots and mittens. Ötzi the Iceman had moss-packed boots.
The capacity of dried mosses to absorb fluids has made their use practical in both medical and culinary uses. North American tribal people used mosses for diapers, wound dressing, and menstrual fluid absorption. Tribes of the Pacific Northwest in the United States and Canada used mosses to clean salmon prior to drying it, and packed wet moss into pit ovens for steaming Camassia bulbs. Food storage baskets and boiling baskets were also packed with mosses.
Recent research investigating the Neanderthals remains recovered from El Sidrón have provided evidence that their diet would have consisted primarily of pine nuts, moss and mushrooms. This is contrasted by evidence from other European locations, which point to a more carnivorous diet.
In Finland, peat mosses have been used to make bread during famines.Engman, Max; D. G. Kirby (1989). Finland: people, nation, state. C. Hurst & Co. p. 45. .
Sphagnum moss, generally the species S. cristatum and S. subnitens, is harvested while still growing and is dried out to be used in nurseries and horticulture as a plant growing medium.
Some Sphagnum mosses can absorb up to 20 times their own weight in water. In World War I, Sphagnum mosses were used as first-aid dressings on soldiers' wounds, as these mosses said to absorb liquids three times faster than cotton, retain liquids better, better distribute liquids uniformly throughout themselves, and are cooler, softer, and less irritating. Moss is also claimed to have antibacterial properties. Native Americans were one of the peoples to use Sphagnum for diapers and , which is still done in Canada.
In rural United Kingdom, Fontinalis antipyretica was traditionally used to extinguish fires as it could be found in substantial quantities in slow-moving rivers and the moss retained large volumes of water which helped extinguish the flames. This historical use is reflected in its specific Latin/Greek language name, which means "against fire".
In Mexico, moss is used as a Christmas decoration.
Physcomitrium patens is increasingly used in biotechnology. Prominent examples are the identification of moss
with implications for crop improvement or human healthRalf Reski and Wolfgang Frank (2005): Moss ( Physcomitrella patens) functional genomics – Gene discovery and tool development with implications for crop plants and human health. Briefings in Functional Genomics and Proteomics 4, 48–57. and the safe production of complex biopharmaceuticals in the moss bioreactor, developed by Ralf Reski and his co-workers.
London installed several structures called "City Trees": moss-filled walls, each of which is claimed to have "the air-cleaning capability of 275 regular trees" by consuming nitrogen oxides and other types of air pollution and producing oxygen.
Further reading
External links
|
|