The Mach number ( M or Ma), often only Mach, (; ) is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. It is named after the physicist and philosopher Ernst Mach.
where:
By definition, at Mach1, the local flow velocity is equal to the speed of sound. At Mach0.65, is 65% of the speed of sound (subsonic), and, at Mach1.35, is 35% faster than the speed of sound (supersonic).
The local speed of sound, and hence the Mach number, depends on the temperature of the surrounding gas. The Mach number is primarily used to determine the approximation with which a flow can be treated as an incompressible flow. The medium can be a gas or a liquid. The boundary can be travelling in the medium, or it can be stationary while the medium flows along it, or they can both be moving, with different velocity: what matters is their relative velocity with respect to each other. The boundary can be the boundary of an object immersed in the medium, or of a channel such as a nozzle, diffuser or wind tunnel channelling the medium. As the Mach number is defined as the ratio of two speeds, it is a dimensionless quantity. If < 0.2–0.3 and the flow is steady flow and isothermal flow, compressibility effects will be small and simplified incompressible flow equations can be used.
Meanwhile, the supersonic regime is usually used to talk about the set of Mach numbers for which linearised theory may be used, where for example the (air) flow is not chemically reacting, and where heat-transfer between air and vehicle may be reasonably neglected in calculations.
At transonic speeds, the flow field around the object includes both sub- and supersonic parts. The transonic period begins when first zones of M > 1 flow appear around the object. In case of an airfoil (such as an aircraft's wing), this typically happens above the wing. Supersonic flow can decelerate back to subsonic only in a normal shock; this typically happens before the trailing edge. (Fig.1a)
As the speed increases, the zone of M > 1 flow increases towards both leading and trailing edges. As M = 1 is reached and passed, the normal shock reaches the trailing edge and becomes a weak oblique shock: the flow decelerates over the shock, but remains supersonic. A normal shock is created ahead of the object, and the only subsonic zone in the flow field is a small area around the object's leading edge. (Fig.1b)
When an aircraft exceeds Mach 1 (i.e. the sound barrier), a large pressure difference is created just in front of the aircraft. This abrupt pressure difference, called a shock wave, spreads backward and outward from the aircraft in a cone shape (a so-called Mach cone). It is this shock wave that causes the sonic boom heard as a fast moving aircraft travels overhead. A person inside the aircraft will not hear this. The higher the speed, the more narrow the cone; at just over M = 1 it is hardly a cone at all, but closer to a slightly concave plane.
At fully supersonic speed, the shock wave starts to take its cone shape and flow is either completely supersonic, or (in case of a blunt object), only a very small subsonic flow area remains between the object's nose and the shock wave it creates ahead of itself. (In the case of a sharp object, there is no air between the nose and the shock wave: the shock wave starts from the nose.)
As the Mach number increases, so does the strength of the shock wave and the Mach cone becomes increasingly narrow. As the fluid flow crosses the shock wave, its speed is reduced and temperature, pressure, and density increase. The stronger the shock, the greater the changes. At high enough Mach numbers the temperature increases so much over the shock that ionization and dissociation of gas molecules behind the shock wave begin.
where:
and the speed of sound varies with the thermodynamic temperature as:
where:
If the speed of sound is not known, Mach number may be determined by measuring the various air pressures (static and dynamic) and using the following formula that is derived from Bernoulli's equation for Mach numbers less than 1.0. Assuming air to be an ideal gas, the formula to compute Mach number in a subsonic compressible flow is:Olson, Wayne M. (2002). "AFFTC-TIH-99-02, Aircraft Performance Flight Testing". Air Force Flight Test Center, Edwards Air Force Base, California: United States Air Force.
where:
The formula to compute Mach number in a supersonic compressible flow is derived from the Rayleigh number supersonic pitot equation:
Assuming air to be an ideal gas, the formula to compute Mach number in a subsonic compressible flow is found from Bernoulli's equation for (above):
The formula to compute Mach number in a supersonic compressible flow can be found from the Rayleigh supersonic pitot equation (above) using parameters for air:
where:
As can be seen, M appears on both sides of the equation, and for practical purposes a root-finding algorithm must be used for a numerical solution (the equation is a septic equation in M2 and, though some of these may be solved explicitly, the Abel–Ruffini theorem guarantees that there exists no general form for the roots of these polynomials). It is first determined whether M is indeed greater than 1.0 by calculating M from the subsonic equation. If M is greater than 1.0 at that point, then the value of M from the subsonic equation is used as the initial condition for fixed point iteration of the supersonic equation, which usually converges very rapidly. Alternatively, Newton's method can also be used.
See also
Notes
External links
|
|