Product Code Database
Example Keywords: stitch -coat $46-129
barcode-scavenger
   » » Wiki: Lithoautotroph
Tag Wiki 'Lithoautotroph'.
Tag

A lithoautotroph is an organism that derives energy from reactions of compounds of (inorganic) origin. Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light, while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. Chemolithoautotrophs are exclusively . Photolithoautotrophs include such as plants; these do not possess the ability to use mineral sources of reduced compounds for energy. Most chemolithoautotrophs belong to the domain , while some belong to the domain . Lithoautotrophic bacteria can only use inorganic molecules as substrates in their energy-releasing reactions. The term "lithotroph" is from Greek lithos ( λίθος) meaning "rock" and trōphos (τροφοσ) meaning "consumer"; literally, it may be read "eaters of rock." The "lithotroph" part of the name refers to the fact that these organisms use inorganic elements/compounds as their electron source, while the "autotroph" part of the name refers to their carbon source being CO2. Many lithoautotrophs are , but this is not universally so, and some can be found to be the cause of acid mine drainage.

Lithoautotrophs are extremely specific in their source of reduced compounds. Thus, despite the diversity in using inorganic compounds that lithoautotrophs exhibit as a group, one particular lithoautotroph would use only one type of inorganic molecule to get its energy. A chemolithotrophic example is , which use ammonia and nitrite to produce (N2). Additionally, in July 2020, researchers reported the discovery of chemolithoautotrophic bacterial cultures that feed on the metal after performing unrelated experiments and named their bacterial species Manganitrophus noduliformans and Ramlibacter lithotrophicus.


Metabolism
Some chemolithotrophs use redox half-reactions with low reduction potentials for their metabolisms, meaning that they do not harvest a lot of energy compared to organisms that use organotrophic pathways. This leads some chemolithotrophs, such as Nitrosomonas, to be unable to reduce NAD+ directly; therefore, these organisms rely on reverse electron transport to reduce NAD+ and form NADH and H+.


Geological processes
Lithoautotrophs participate in many geological processes, such as the of (bedrock) to form , as well as biogeochemical cycling of , , and other elements. The existence of undiscovered strains of microbial lithoautotrophs is theorized based on some of these cycles, as they are needed to explain phenomena like the conversion of ammonium in iron-reducing environments. Lithoautotrophs may be present in the deep terrestrial subsurface (they have been found well over 3 km below the surface of the planet), in , and in communities. As they are responsible for the liberation of many crucial nutrients, and participate in the , lithoautotrophs play a crucial role in the maintenance of on Earth. For example, the nitrogen cycle is influenced by the activity of ammonium-oxidizing archaea, anammox bacteria, and (comammox) bacteria of the genus .

Several environmental hazards, such as (NH4+), (H2S), and the (CH4), may be converted by chemolithoautotrophs into forms that are less environmentally harmful, such as N2, , and . Although it was long believed that these organisms required oxygen to make these conversions, recent literature suggests that anaerobic oxidation also exists for these systems.


Acid mine drainage
Lithoautotrophic microbial consortia are responsible for the phenomenon known as acid mine drainage, whereby present in mine tailing heaps and in exposed rock faces is metabolized, using , to produce , which form potentially corrosive when dissolved in water and exposed to aerial . Acid mine drainage drastically alters the acidity and chemistry of and and may endanger plant and animal populations. Activity similar to acid mine drainage, but on a much lower scale, is also found in natural conditions such as the rocky beds of , in soil and , and in the deep subsurface.


See also
  • - pathways sulfur travels on Earth
  • - reactions governing much of energy metabolism and other chemical processes on Earth

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time