A lighthouse is a tower, building, or other type of physical structure designed to emit light from a system of lamps and lenses and to serve as a beacon for navigational aid for at sea or on inland waterways.
Lighthouses mark dangerous coastlines, hazardous , , rocks, and safe entries to harbors; they also assist in aerial navigation. Once widely used, the number of operational lighthouses has declined due to the expense of maintenance and the advent of much cheaper, more sophisticated, and more effective electronic navigational systems.
The intact Tower of Hercules at A Coruña, Spain gives insight into ancient lighthouse construction; other evidence about lighthouses exists in depictions on coins and mosaics, of which many represent the lighthouse at Ostia. Coins from Alexandria, Ostia, and Latakia also exist.
The Eddystone Rocks were a major shipwreck hazard for mariners sailing through the English Channel. The first lighthouse built there was an octagonal wooden structure, anchored by 12 iron stanchions secured in the rock, and was built by Henry Winstanley from 1696 to 1698. His lighthouse was the first tower in the world to have been fully exposed to the open sea.
The civil engineer John Smeaton rebuilt the lighthouse from 1756 to 1759;Majdalany, Fred: The Eddystone Light. 1960 his tower marked a major step forward in the design of lighthouses and remained in use until 1877. He modeled the shape of his lighthouse on that of an oak tree, using granite blocks. He rediscovered and used "hydraulic lime", a form of concrete that will set under water used by the Romans, and developed a technique of securing the granite blocks together using and marble dowels. The dovetailing feature served to improve the structural stability, although Smeaton also had to taper the thickness of the tower towards the top, for which he curved the tower inwards on a gentle gradient. This profile had the added advantage of allowing some of the energy of the waves to dissipate on impact with the walls. His lighthouse was the prototype for the modern lighthouse and influenced all subsequent engineers.
One such influence was Robert Stevenson, himself a seminal figure in the development of lighthouse design and construction. His greatest achievement was the construction of the Bell Rock Lighthouse in 1810, one of the most impressive feats of engineering of the age. This structure was based upon Smeaton's design, but with several improved features, such as the incorporation of rotating lights, alternating between red and white. Stevenson worked for the Northern Lighthouse Board for nearly fifty years during which time he designed and oversaw the construction and later improvement of numerous lighthouses. He innovated in the choice of light sources, mountings, reflector design, the use of , and in rotation and shuttering systems providing lighthouses with individual signatures allowing them to be identified by seafarers. He also invented the movable jib and the balance-crane as a necessary part for lighthouse construction. Alexander Mitchell designed the first screw-pile lighthouse – his lighthouse was built on piles that were into the sandy or muddy seabed. Construction of his design began in 1838 at the mouth of the Thames and was known as the Maplin Sands lighthouse, and first lit in 1841. Although its construction began later, the Wyre Light in Fleetwood, Lancashire, was the first to be lit (in 1840).
South Foreland Lighthouse was the first tower to successfully use an electric light in 1875. The lighthouse's carbon were powered by a steam-driven magneto. John Richardson Wigham was the first to develop a system for coal gas illumination of lighthouses. His improved gas 'crocus' burner at the Baily Lighthouse near Dublin was 13 times more powerful than the most brilliant light then known. The vaporized oil burner was invented in 1901 by Arthur Kitson, and improved by David Hood at Trinity House. The fuel was vaporized at high pressure and burned to heat the mantle, giving an output of over six times the luminosity of traditional oil lights. The use of gas as illuminant became widely available with the invention of the Dalén light by Swedish engineer Gustaf Dalén. He used Agamassan (Aga), a substrate, to absorb the gas, allowing the gas to be stored, and hence used, safely. Dalén also invented the 'sun valve', which automatically regulated the light and turned it off during the daytime. The technology was the predominant light source in lighthouses from the 1900s to the 1960s, when electric lighting had become dominant.
French physicist and engineer Augustin-Jean Fresnel developed the multi-part Fresnel lens for use in lighthouses. His design allowed for the construction of lenses of large aperture and short focal length, without the mass and volume of material that would be required by a lens of conventional design. A Fresnel lens can be made much thinner than a comparable conventional lens, in some cases taking the form of a flat sheet. A Fresnel lens can also capture more oblique light from a light source, thus allowing the light from a lighthouse equipped with one to be visible over greater distances.
The first Fresnel lens was used in 1823 in the Cordouan lighthouse at the mouth of the Gironde estuary; its light could be seen from more than out.Watson, Bruce. "Science Makes a Better Lighthouse Lens." Smithsonian. August 1999 v30 i5 p30. produced in Biography Resource Center. Farmington Hills, Mich.: Thomson Gale. 2005. Fresnel's invention increased the luminosity of the lighthouse lamp by a factor of four and his system is still in common use.
The remaining modern lighthouses are usually illuminated by a single stationary flashing light powered by solar-charged batteries and mounted on a steel skeleton tower. Where the power requirement is too great for solar power alone, cycle charging of the battery by a Diesel generator is provided. The generator only comes into use when the battery needs charging, saving fuel and increasing periods between maintenance.
United States Army Corps of Engineers Lieutenant George Meade built numerous lighthouses along the Atlantic and Gulf coasts before gaining wider fame as the winning general at the Battle of Gettysburg. Colonel Orlando M. Poe, engineer to General William Tecumseh Sherman in the siege of Atlanta, designed and built some of the most exotic lighthouses in the most difficult locations on the U.S. Great Lakes.
French merchant navy officer Marius Michel Pasha built almost a hundred lighthouses along the coasts of the Ottoman Empire in a period of twenty years after the Crimean War (1853–1856).
Whale oil was also used with wicks as the source of light. Kerosene became popular in the 1870s and electricity and acetylene gas derived on-site from calcium carbide began replacing kerosene around the turn of the 20th century. Carbide was promoted by the Dalén light, which automatically lit the lamp at nightfall and extinguished it at dawn.
In the second half of the 20th century, many remote lighthouses in Russia (then Soviet Union) were powered by radioisotope thermoelectric generators (RTGs). These had the advantage of providing power day or night and did not need refuelling or maintenance. However, after the collapse of the Soviet government in 1990s, most of the official records on the locations, and condition, of these lighthouses were reportedly lost. Over time, the condition of RTGs in Russia degraded; many of them fell victim to vandalism and scrap metal thieves, who may not have been aware of the dangerous radioactive contents.
Energy-efficient LED lights can be powered by , with batteries instead of a Diesel generator for backup.
In modern automated lighthouses, the system of rotating lenses is often replaced by a high intensity light that emits brief omnidirectional flashes, concentrating the light in time rather than direction. These lights are similar to obstruction lights used to warn aircraft of tall structures. Later innovations were "Vega Lights", and experiments with light-emitting diode (LED) panels.
LED lights, which use less energy and are easier to maintain, had come into widespread use by 2020. In the United Kingdom and Ireland about a third of lighthouses had been converted from filament light sources to use LEDs, and conversion continued with about three per year. The light sources are designed to replicate the colour and character of the traditional light as closely as possible. The change is often not noticed by people in the region, but sometimes a proposed change leads to calls to preserve the traditional light, including in some cases a rotating beam. A typical LED system designed to fit into the traditional 19th century Fresnel lens enclosure was developed by Trinity House and two other lighthouse authorities and costs about Euro20,000, depending on configuration, according to a supplier; it has large fins to dissipate heat. Lifetime of the LED light source is 50,000 to 100,000 hours, compared to about 1,000 hours for a filament source.
This concentration of light is accomplished with a rotating lens assembly. In early lighthouses, the light source was a kerosene lamp or, earlier, an animal or vegetable oil Argand lamp, and the lenses rotated by a weight driven clockwork assembly wound by lighthouse keepers, sometimes as often as every two hours. The lens assembly sometimes floated in liquid mercury to reduce friction. In more modern lighthouses, electric lights and motor drives were used, generally powered by diesel electric generators. These also supplied electricity for the lighthouse keepers.
Efficiently concentrating the light from a large omnidirectional light source requires a very large diameter lens. This would require a very thick and heavy lens if a conventional lens were used. The Fresnel lens (pronounced ) focused 85% of a lamp's light versus the 20% focused with the parabolic reflectors of the time. Its design enabled construction of lenses of large size and short focal length without the weight and volume of material in conventional lens designs.
Fresnel lighthouse lenses are ranked by order, a measure of refracting power, with a first order lens being the largest, most powerful and expensive; and a sixth order lens being the smallest. The order is based on the focal length of the lens. A first order lens has the longest focal length, with the sixth being the shortest. Coastal lighthouses generally use first, second, or third order lenses, while harbor lights and beacons use fourth, fifth, or sixth order lenses.
Some lighthouses, such as those at Cape Race, Newfoundland, and Makapuu Point, Hawaii, used a more powerful hyperradiant Fresnel lens manufactured by the firm of Chance Brothers.
A light station comprises the lighthouse tower and all outbuildings, such as the keeper's living quarters, fuel house, boathouse, and Foghorn building. The Lighthouse itself consists of a tower structure supporting the lantern room where the light operates.
The lantern room is the glassed-in housing at the top of a lighthouse tower containing the lamp and lens. Its glass storm panes are supported by metal (glazing bars) running vertically or diagonally. At the top of the lantern room is a stormproof ventilator designed to remove the smoke of the lamps and the heat that builds in the glass enclosure. A lightning rod and grounding system connected to the metal cupola roof provides a safe conduit for any lightning strikes.
Immediately beneath the lantern room is usually a Watch Room or Service Room where fuel and other supplies were kept and where the keeper prepared the lanterns for the night and often stood watch. The clockworks (for rotating the lenses) were also located there. On a lighthouse tower, an open platform called the gallery is often located outside the watch room (called the Main Gallery) or Lantern Room (Lantern Gallery). This was mainly used for cleaning the outside of the windows of the Lantern Room.
Lighthouses near to each other that are similar in shape are often painted in a unique pattern so they can easily be recognized during daylight, a marking known as a daymark. The black and white barber pole spiral pattern of Cape Hatteras Lighthouse is one example. Race Rocks Light in western Canada is painted in horizontal black and white bands to stand out against the horizon.
Where dangerous shoals are located far off a flat sandy beach, the prototypical tall masonry coastal lighthouse is constructed to assist the navigator making a landfall after an ocean crossing. Often these are cylindrical to reduce the effect of wind on a tall structure, such as Cape May Light. Smaller versions of this design are often used as harbor lights to mark the entrance into a harbor, such as New London Harbor Light.
Where a tall cliff exists, a smaller structure may be placed on top such as at Horton Point Light. Sometimes, such a location can be too high, for example along the west coast of the United States, where frequent low clouds can obscure the light. In these cases, lighthouses are placed below the clifftop to ensure that they can still be seen at the surface during periods of fog or low clouds, as at Point Reyes Lighthouse. Another example is in San Diego, California: the Old Point Loma lighthouse was too high up and often obscured by fog, so it was replaced in 1891 with a lower lighthouse, New Point Loma lighthouse.
As technology advanced, prefabricated skeletal iron or steel structures tended to be used for lighthouses constructed in the 20th century. These often have a narrow cylindrical core surrounded by an open lattice work bracing, such as Finns Point Range Light.
Sometimes a lighthouse needs to be constructed in the water itself. Wave-washed lighthouses are masonry structures constructed to withstand water impact, such as Eddystone Lighthouse in Britain and the St. George Reef Light of California. In shallower bays, Screw-pile lighthouse ironwork structures are screwed into the seabed and a low wooden structure is placed above the open framework, such as Thomas Point Shoal Lighthouse. As screw piles can be disrupted by ice, steel caisson lighthouses such as Orient Point Light are used in cold climates. Orient Long Beach Bar Light (Bug Light) is a blend of a screw pile light that was converted to a caisson light because of the threat of ice damage. Skeletal iron towers with screw-pile foundations were built on the Florida Reef along the Florida Keys, beginning with the Carysfort Reef Light in 1852.
In waters too deep for a conventional structure, a Lightvessel might be used instead of a lighthouse, such as the former lightship Columbia. Most of these have now been replaced by fixed light platforms (such as Ambrose Light) similar to those used for offshore oil exploration.
Such paired lighthouses are called Leading lights in North America and leading lights in the United Kingdom. The closer light is referred to as the beacon or front range; the further light is called the rear range. The rear range light is almost always taller than the front.
When a vessel is on the correct course, the two lights align vertically, but when the observer is out of position, the difference in alignment indicates the direction of travel to correct the course.
Offshore Lighthouses are lighthouses that are not close to land. There can be a number of reasons for these lighthouses to be built. There can be a shoal, reef or submerged island several miles from land.
The current Cordouan Lighthouse was completed in 1611, from the shore on a small islet, but was built on a previous lighthouse that can be traced back to the 880s and is the oldest surviving lighthouse in France. It is connected to the mainland by a causeway. The oldest surviving oceanic offshore lighthouse is Bell Rock Lighthouse in the North Sea, off the coast of Scotland.
In India, lighthouses are maintained by the Directorate General of Lighthouses and Lightships, an office of the Ministry of Ports, Shipping and Waterways.
The United Kingdom and the Republic of Ireland together have three bodies: lighthouses around the coasts of England and Wales are looked after by Trinity House, those around Scotland and the Isle of Man by the Northern Lighthouse Board and those around Ireland by the Commissioners of Irish Lights.
In the United States, lighthouses are maintained by the United States Coast Guard, into which the United States Lighthouse Service was merged in 1939.
Many groups formed to restore and save lighthouses around the world, including the World Lighthouse Society and the United States Lighthouse Society, as well as the Amateur Radio Lighthouse Society, which sends amateur radio operators to publicize the preservation of remote lighthouses throughout the world.
Light source
Laser light
Light characteristics
Lens
Building
Components
Design
Range lights
Location
Maintenance
Asia and Oceania
Europe
North America
Preservation
See also
Further reading
External links
|
|