Product Code Database
Example Keywords: shoes -shoe $11
barcode-scavenger
   » » Wiki: Laccolith
Tag Wiki 'Laccolith'.
Tag

A laccolith is a body of with a dome-shaped upper surface and a level base, fed by a conduit from below. A laccolith forms when (molten rock) rising through the Earth's crust begins to spread out horizontally, prying apart the host rock . The pressure of the magma is high enough that the overlying strata are forced upward, giving the laccolith its dome-like form.

Over time, can expose the solidified laccolith, which is typically more resistant to than the host rock. The exposed laccolith then forms a hill or mountain. The of , US, are an example of a mountain range composed of exposed laccoliths. It was here that geologist Grove Karl Gilbert carried out pioneering on this type of . Laccolith mountains have since been identified in many other parts of the world. [[File:Intrusion types.svg|thumb|upright=1.3| Basic types of intrusions: Note: As a general rule, in contrast to the smoldering volcanic vent in the figure, these names refer to the fully cooled and usually millions-of-years-old rock formations, which are the result of the underground magmatic activity shown.]]


Description
A laccolith is a type of igneous intrusion, formed when forces its way upwards through the Earth's crust but cools and solidifies before reaching the surface. Laccoliths are distinguished from other igneous intrusions by their dome-shaped upper surface and level base. They are assumed to be fed by a conduit from below, though this is rarely exposed.
(2025). 9780521880060, Cambridge University Press.
(1995). 9780195628166, Oxford University Press. .
When the host rock is volcanic, the laccolith is referred to as a . Laccoliths form only at relatively shallow depth in the crust, usually from intermediate composition magma, though laccoliths of all compositions from -poor to silica-rich are known.

A laccolith forms after an initial has been injected between layers of . If the intrusion remains limited in size, it forms a sill, in which the strata above and below the intrusion remain parallel to each other and the intrusion remains sheetlike. The intrusion begins to lift and dome the overlying strata only if the radius of the intrusion exceeds a critical radius, which is roughly:

r \ge \frac{2T\tau}{P_m-P_l}

where P_m is the pressure of the magma, P_l is the lithostatic pressure (weight of the overlying rock), T is the thickness of the overlying rocks, and \tau is the shear strength of the overlying rock. For example, in the of , US, the geologist Grove Karl Gilbert found in 1877 that sills were always less than in area while laccoliths were always greater than 1 square kilometer in area. From this, Gilbert concluded that sills were forerunners of laccoliths. Laccoliths formed from sills only when they became large enough for the pressure of the to force the overlying strata to dome upwards. Gilbert also determined that larger laccoliths formed at greater depth. Both laccoliths and sills are classified as concordant intrusions, since the bulk of the intrusion does not cut across host rock strata, but intrudes between strata.

More recent study of laccoliths has confirmed Gilbert's basic conclusions, while refining the details. Both sills and laccoliths have blunt rather than wedgelike edges, and sills of the Henry Mountains are typically up to thick while laccoliths are up to thick. The periphery of a laccolith may be smooth, but it may also have fingerlike projections consistent with Rayleigh-Taylor instability of the magma pushing along the strata. An example of a fingered laccolith is the laccolith in , US. The critical radius for the sill to laccolith transition is now thought to be affected the viscosity of the magma (being greater for less viscous magma) as well as the strength of the host rock. A modern formula for the shape of a laccolith is:

z = \frac{3(P_m-\rho_cgT)}{16BT^3}(r_0^2-r^2)^2

where z is the height of the laccolith roof, g is the acceleration of gravity, B is the elastic modulus of the host rock, r is the horizontal distance from the center of the laccolith, and r_0 is the outer radius of the laccolith. Because of their greater thickness, which slows the cooling rate, the rock of laccoliths is usually coarser-grained than the rock of sills.

The growth of laccoliths can take as little as a few months when associated with a single magma injection event, or up to hundreds or thousands of years by multiple magmatic pulses stacking sills on top of each other and deforming the host rock incrementally.

Over time, erosion can form small hills and even mountains around a central peak since the intrusive rock is usually more resistant to weathering than the host rock.

(2025). 9781607810049, University of Utah Press.
Because the emplacement of the laccolith domes up the overlying beds, local topographic relief is increased and erosion is accelerated, so that the overlying beds are eroded away to expose the intrusive cores.


Etymology
The term was first applied as laccolite by Gilbert after his study of intrusions of in the of in about 1875. The word laccolith derives from ( lákkos), meaning "cistern", and ( líthos), meaning "stone".


Where laccoliths form
Laccoliths tend to form at relatively shallow depths and in some cases are formed by relatively magmas, such as those that crystallize to , , and . In those cases cooling underground may take place slowly, giving time for larger crystals to form in the cooling magma. In other cases less viscous magma such as may form of at depth, then inject through a vertical feeder dike that ends in a laccolith."Beall, Joseph J." "Pseudo-Rhythmic Layering in the Square Butte Alkali-Gabbro Laccolith." American Mineralogist. 57:7-8 (July–August 1972).

Sheet intrusions tend to form perpendicular to the direction of least stress in the country rock they intrude. Thus laccoliths are characteristic of regions where the crust is being compressed and the direction of least stress is vertical, while areas where the crust is in tension are more likely to form dikes, since the direction of least stress is then horizontal. For example, the laccoliths of the Ortiz porphyry belt in likely formed during compression of the region 33 to 36 million years ago. When Laramide compression was later replaced by extension, emplacement of sills and laccoliths was replaced by emplacement of dikes. Dating of the intrusions has helped determine the point in geologic time when compression was replaced with extension.


Examples
In addition to the Henry Mountains, laccolith mountains are found on the nearby in the La Sal Mountains and .

The filled and solidified of Torres del Paine () is one of the best exposed laccoliths, built up incrementally by horizontal granitic and magma intrusions over 162 ± 11 thousand years. Horizontal sheeted intrusions were fed by vertical intrusions.

The small -stock laccolith in Charlotte, Vermont, has several volcanic dikes associated with it. is also visible in outcrops on this exposed laccolith. In Big Bend Ranch State Park, at the southwesternmost visible extent of the , lies the . It consists of the eroded remains of a laccolith, presumably named for the sense of that observers within the structure might have, due to the partial of endless expanse in all directions.

One of the largest laccoliths in the United States is Pine Valley Mountain in the Pine Valley Mountain Wilderness area near St. George, Utah.

A system of laccoliths is exposed on the Italian island of , which form a "Christmas tree" laccolith system in which a single igneous plumbing system has produced multiple laccoliths at different levels in the crust.


Problems reconstructing shapes of intrusions
The original shape of intrusions can be difficult to reconstruct. For instance, in and in were both thought to be volcanic necks, but further study has suggested they are eroded laccoliths. At , would have had to cool very slowly so as to form the slender pencil-shaped columns of porphyry seen today. However, erosion has stripped away the overlying and surrounding rock, so it is impossible to reconstruct the original shape of the igneous intrusion, which may or may not be the remnant of a laccolith. At other localities, such as in the and other isolated mountain ranges of the , some intrusions demonstrably have the classic shapes of laccoliths.


Extraterrestrial laccoliths
There are many examples of possible laccoliths on the surface of the . Some are centered in and may form as part of the post-impact evolution of the crater. Others are located along possible faults or fissures. Laccoliths on the Moon are much wider but less thick than those on Earth, due to the Moon's lower gravity and more fluid magmatism.

Possible laccoliths have also been identified on , in western .


Gallery

See also

Further reading


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time