Product Code Database
Example Keywords: grand theft -television $53
   » » Wiki: Jubatus
Tag Wiki 'Jubatus'.
Tag

Jubatus is an open-source online machine learning and distributed computing framework developed at Nippon Telegraph and Telephone and Preferred Infrastructure. Its features include classification, recommendation, regression, anomaly detection and graph mining. It supports many client languages, including C++, Java, Ruby and Python. It uses Iterative Parameter MixtureRyan McDonald, K. Hall and G. Mann, Distributed Training Strategies for the Structured Perceptron, North American Association for Computational Linguistics (NAACL), 2010.Gideon Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker, Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models, Neural Information Processing Systems (NIPS), 2009. for distributed machine learning.


Notable Features
Jubatus supports:
  • Multi-classification algorithms:
    • Passive AggressiveKoby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass problems. Journal of Machine Learning Research, 2003.Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer, Online Passive-Aggressive Algorithms. Journal of Machine Learning Research, 2006.
    • Confidence WeightedMark Dredze, Koby Crammer and Fernando Pereira, Confidence-Weighted Linear Classification, Proceedings of the 25th International Conference on Machine Learning (ICML), 2008Koby Crammer, Mark Dredze and Fernando Pereira, Exact Convex Confidence-Weighted Learning, Proceedings of the Twenty Second Annual Conference on Neural Information Processing Systems (NIPS), 2008Koby Crammer, Mark Dredze and Alex Kulesza, Multi-Class Confidence Weighted Algorithms, Empirical Methods in Natural Language Processing (EMNLP), 2009
    • Adaptive Regularization of Weight VectorsKoby Crammer, Alex Kulesza and Mark Dredze, Adaptive Regularization Of Weight Vectors, Advances in Neural Information Processing Systems, 2009
    • Normal HerdKoby Crammer and Daniel D. Lee, Learning via Gaussian Herding, Neural Information Processing Systems (NIPS), 2010.
  • Recommendation algorithms using:
  • Regression algorithms:
    • Passive Aggressive
  • feature extraction method for natural language:

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs