Hywind was the first MW-class floating wind turbine concept, developed by StatoilHydro (now Equinor). It has a rated power of 2.3 megawatts (MW), and is mounted on a spar foundation derived from oil platforms. The basic development was done by Norsk Hydro, hence the name. The Hywind turbines are designed to be installed offshore in water depths of 120–700 metres.
The first pilot Hywind turbine was installed and commissioned in the North Sea, south-west of Karmøy, south-west Norway, in September 2009.
In 2019, the turbine was acquired by Unitech Offshore and renamed the Unitech Zefyros. It will be used for development and testing of new technologies, and as a hub to connect other turbines in the Marine Energy Test Centre (METCentre) test site for offshore wind turbines.
Following the single turbine demonstration, the Hywind Scotland and Hywind Tampen wind farms have been constructed.
This type of foundation has been used for oil and gas platforms for many years. It is similar to that used in the Troll B & C platforms. The position of Hywind is monitored using GPS.
A standard Siemens Wind Power offshore wind turbine is mounted on top of the foundation.
The Hywind concept was originally developed by marine engineer Dagfinn Sveen in 2001, at Norsk Hydro's new energy department. The concept was patented and industrial relations were established with Siemens, among others. When Statoil (now Equinor) took over Norsk Hydro's oil division in 2008, Hywind was also transferred.
Of the total weight of approx. 5,300 tonnes, approximately 3,500 tonnes consists of ballast, mainly olivine with a density of 2.6 t/m3. The wind turbine is a standard Siemens 2.3 MW wind turbine with Statoil's proprietary control system. Nexans Norway has supplied and installed the 13-kilometre cable that supplies power to the local grid supplier Haugaland Kraft. The cable comes ashore near Skudeneshavn on the southern tip of Karmøy.
The investment amounts to almost Norwegian krone 400 million (around US$62 million) to build and deploy., of which NOK 59 million is support from the Norwegian government through Enova. Statoil receives income from electricity production, but this is not the primary focus of the project. The main purpose is to gain experience from full-scale power production from floating wind turbines, and is one of several of Statoil's focus areas within renewable energy.
Equinor estimates that floating wind turbines in the North Sea will deliver the equivalent of 4,000 full load hours — which corresponds to a production of 46% of installed capacity. For a 2.3 MW wind turbine, as in the pilot project, this would mean an annual production of 9.2 GWh. In order to obtain the best possible wind data, Statoil has entered into a collaboration with the Norwegian Meteorological Institute and Kjeller Vindteknikk for measuring and forecasting wind and waves. The Norwegian Meteorological Institute has set up special versions of its numerical weather models that include measurement data from Statoil's 100-metre-high wind measuring mast on Karmøy, as well as the wave and current measuring buoy at Hywind. In addition, a LIDAR on Utsira will be used to assess the quality of the wind forecasts.
As the wind turbine is floating, the wind and waves will cause movement in all six degrees of freedom of motion. The movement leads to complicated dynamic loads on the wind turbine and tower, and is one of the most important test areas for the project as this is difficult to calculate correctly with computer-aided design. In the Autumn of 2005, model tests were carried out at Marintek (now SINTEF) in Trondheim with a 1:47 scale model.
The long submarine power transmission cable was installed in July 2009 and system test including rotor blades and initial power transmission was conducted shortly thereafter.
The turbine was connected to the grid in August, with the official inauguration on 8 September 2009.
The first full year the turbine was in trial operation, 2010, it delivered 7.3 GWh against the expected 3.5 GWh. The turbine was exposed to waves up to 11 m and proved more stable than expected. The floating installation does not place greater loads on the turbine than an onshore installation, and vibration loads are reduced compared to land-based turbines.
By 2016, the turbine had produced 50 GWh; an overall capacity factor of 41%. The turbine survived 40 m/s wind speed and wave high.
In 2019, the turbine was sold to Unitech Offshore, with the expectation of 10 more years of production and tests. In 2022, Unitech mounted a helicopter pad on the turbine, the first time for a floating offshore wind turbine.
+Wind turbine specifications !Wind turbine | Siemens SWT-2.3-82 |
The next phase was a farm with three to five turbines, with both Scotland and Maine considered as possible locations in 2015-16. The Hywind 2 project in Maine was abandoned, with Statiol citing legislative changes as the reason. A new bill (LD 1472) would allow the University of Maine to bid in a second round competitive auction for an offshore wind project in the state’s waters. However, Statoil built five 6 MW floating turbines, deployed in the Hywind Scotland project in 2017 at 70 per cent lower cost.
|
|