Product Code Database
Example Keywords: jelly -mario $67-106
barcode-scavenger
   » » Wiki: Gaussberg
Tag Wiki 'Gaussberg'.
Tag

Gaussberg (or Schwarzen Berg, Mount Gauss) is a extinct in fronting on immediately west of Posadowsky Glacier. It is ice-free and conical in nature, having formed subglacially about 55,000 years ago. The current edifice is thought to be the remains of a once-larger that has been reduced by and . The volcano has produced magmas, and is the youngest volcano to have produced such magmas on Earth.


Research history
Discovered in February 1902 by the under Erich von Drygalski, who named it after his expedition ship which in 1902 remained stuck in ice for a year. The ship in turn was named in honour of the German mathematician Carl Friedrich Gauss. Drygalski observed the volcano with the help of a tethered balloon.

Owing to its peculiar composition, Gaussberg has been intensively researched. The mountain was investigated in 1912 by the 1911-1914 Australasian Antarctic Expedition, by the Soviet Antarctic Expedition in 1956–1957, by Australian expeditions in 1977, 1981, 1987 and by an expedition linked to an entity "K.D.C" in 1997. Regional stocks in turn were named after the mountain. Owing to its peculiar composition and isolated location, the volcano has an importance out of proportion to its actual size. The mineral is named after the volcano.


Geography and geomorphology
The volcano lies in Kaiser Wilhelm II Land, , close to the West Ice Shelf and between the Australian and Russian . It lies on the Davis Sea immediately west of Posadowsky Glacier. Gaussberg is within the Antarctic territory claimed by Australia, and the only ice-free outcrop between Mirny Station and the .

It consists of a , cone located between the East Antarctic Ice Sheet on three sides and the sea on the fourth. It is the only in the region, with rocky outcrops at the summit and on the northern flank. The edifice covers an area of about and has a volume of . Most of the edifice is made out of with radii of and thick crusts. The volcano is covered with lava fragments resembling which may have formed through erosion. Gaussberg has no , rather having a ridge at the summit. The volcano has several terraces of undetermined origin and may have formed as a with multiple vents. The rocks were probably emplaced subglacially, although the occurrence of is possible. There are on the southern, northwestern and northeastern foot of the volcano, and and glacial striations are evidence that the volcano was formerly glaciated.


Geology
Gaussberg is an extremely isolated volcano although an a few kilometres southwest of Gaussberg and surveys suggest that within there are other small volcanoes in the area. It is the only Antarctic volcano situated on the , where the thickest crust of Antarctica is found. Why it formed about 50,000 years ago on a stable continental margin is unclear; either a , an instability of the East Antarctic continent or lateral flow of mantle plume material are possible. The basement underneath Gaussberg is formed by of to age. The under Gaussberg is over thick and has an unusually high .

Its activity has been related to the Kerguelen Plateau, but the Kerguelen volcanoes have yielded different magma compositions and there is no major geological structure linking the two other than the so-called "Kerguelen-Gaussberg Ridge", thus a connection between the two is unproven. A system in the region, which may have formed in and may be correlated to tectonic structures on the , has been christened the "Gaussberg Rift"; the volcano rises on a horst on the rift but its relation to the rift is unclear. Finally, the 90° E Fault that separates regional tectonic structures may have influenced volcanism at Gaussberg.


Composition
The volcano has a uniform chemical composition consisting of (originally identified as ), which defines a -rich rock suite. The rocks are almost free of visible crystals but contain numerous vesicles. include , and , the latter containing inclusions. The Gaussberg suite is the youngest lamproite known on Earth. The rocks are rich in volatiles including and water. There are , mostly coming from the basement, and recovered from the rocks are up to several billion years old. , and native deposits have been found.

The source of the Gaussberg lamproites is unclear, as the processes usually proposed for the formation of such magmas do not easily apply to the Gaussberg rocks. The magma may have formed through the incomplete melting of -rich mantle and further chemical processes such as crystal fractionation that raised the potassium/ ratio above 1. Deep mantle structures that formed through billions of years ago and remained isolated since then have been proposed as the source of Gaussberg lamproites. The Kerguelen plume may or may not have played a role.


Eruption history
Drastically different age estimates have been obtained on Gaussberg. Early research suggested a or age based on a presumed history of the Antarctic Ice Sheet and comparisons between the appearance of Gaussberg with Kerguelen volcanoes. Potassium-argon dating has yielded ages of 20 and 9 million years, with younger dating efforts producing an age of 56,000±5,000 years. Fission track dating produced ages of 25,000±12,000 years and geomorphologic considerations support a late age. These disagreements between potassium-argon dating and other dating methods may indicate either contamination with older rocks or the presence of non- . The 56,000±5,000 years age is considered to be more probable than the 20 and 9 million years ones.

Gaussberg was probably constructed in a single eruptive episode but there is evidence that the present-day edifice formed on an older, eroded volcano. Gaussberg formed under much thicker ice than there is today in the area, and the ice deposited moraines on its summit. There are different views on how erosion affected Gaussberg; some think that it was largely spared and others that erosion wore down the initially much larger edifice to its current size; the latter theory is the preferred view of the Global Volcanism Program and is supported by aeromagnetic data which suggest an initial size of . Dust layers in the may come from wind-driven erosion of Gaussberg rocks.


Biology
Several species were identified at Gaussberg, as well as a fauna such as inhabiting them. and have been found at Gaussberg. It was the first place on the Antarctic mainland where were reported. occur at the mountain and were observed to breed there, but overall there is not much fauna at Gaussberg.


See also
  • List of volcanoes in Antarctica


Sources

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs